Utilization of various lignocellulosic substrates for Pleurotus ostreatus mushroom cultivation in the manufacturing of polycaprolactone (PCL)-based biocomposite films

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3783-3796
Author(s):  
Gonca Düzkale Sözbir

The possibility of using beech wood sawdust and hazelnut husk waste generated during the cultivation of Pleurotus ostreatus mushrooms as a filler in polycaprolactone (PCL)-based biocomposite films was investigated. Chemical and physical properties of the PCL biocomposites were determined. The beech sawdust and hazelnut husk were exposed to degradation for 73 d and 78 d, respectively, in slightly acidic environments at a relative humidity of 75%. The degraded materials caused the holocellulose and lignin contents in the PCL biocomposites to decrease, while the cellulose and α-cellulose contents increased. In general, as the lignocellulosic waste content increased, the tensile strength (TS) and elongation at break (EatB) values decreased and the tensile modulus (TM) and water absorption (WA) values increased. It was determined that the PCL biocomposite with the degraded beech sawdust absorbed more water than the composite with the undegraded beech sawdust. On the other hand, the PCL biocomposite with the degraded hazelnut husk absorbed less water than the composite with the raw hazelnut husk.

2013 ◽  
Vol 747 ◽  
pp. 649-652 ◽  
Author(s):  
Chan Ming Yeng ◽  
Husseinsyah Salmah ◽  
Sung Ting Sam

Recently, there has been renews interest in chitosan as materials in producing of biocomposite films. The chitosan (CS)/corn cob (CC) biocomposite films were prepared by solvent casting method. The effect of CC content on tensile properties of CS/CC biocomposite films was studied. The tensile strength and elongation at break of CS/CC biocomposite films decreased as increasing of CC content. However, the increasing of CC content was increased the tensile modulus of CS/CC biocomposite films. Scanning electron microscopy (SEM) was indicated that the deceasing of tensile properties was due to the poor interfacial adhesion between CC filler and CS matrix.


1994 ◽  
Vol 6 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Yoshitake Iyoku ◽  
Masa-aki Kakimoto ◽  
Yoshio Imai

Poly(methylsilsesquixoane) network (silicone)-polyimide hybrid materials were successfully prepared by the sol-gel reaction of methyltriethoxysilane (MTES). The ethoxysilyl group in MTES was hydrolyzed and polycondensed in the solution of the polyamic acid, derived from pyromellitic dianhydride and bis(4-aminophenyl)ether, in N,N-dimethyl-acetamide (DMAc). The hybrid films were obtained by casting the reaction mixture, followed by heating up to 300°C. The hybrid materials containing 0-60wt% of silicone afforded flexible films. The films containing less than 7 wt% silicone were yellow and transparent, whereas the films with higher silicone content were yellow and opaque. Silicone particles with a diameter of around 1-10 μm were observed in the fracture surface of the hybrid films by scanning electron microscopy. Although the tensile strength and tensile modulus of the films obtained decreased with increasing silicone content. the value of the elongation at break remained at 60% up to 30% silicone content.


2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


2013 ◽  
Vol 747 ◽  
pp. 645-648 ◽  
Author(s):  
Koay Seong Chun ◽  
Salmah Husseinsyah ◽  
Hakimah Osman

Polypropylene/Cocoa Pod Husk (PP/CPH) biocomposites with different maleated polypropylene (MAPP) content were prepared via melt blending process using Brabender Plastrograph mixer. The tensile strength and tensile modulus of PP/CPH biocomposites increased with increasing of MAPP content. The PP/CPH biocomposites with 5 phr of MAPP showed the optimum improvement on tensile properties. However, the increased of MAPP content reduced the elongation at break of PP/CPH biocomposites. At 5 phr of MAPP content, PP/CPH biocomposites showed lowest elongation at break. Scanning electron microscope confirms the PP/CPH biocomposites with MAPP have better filler-matrix interaction and adhesion due to the effect of MAPP.


2018 ◽  
Vol 34 ◽  
pp. 01030 ◽  
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar ◽  
Hanafi Ismail

Effects of alkanolamide (ALK) addition on cure characteristics, swelling behaviour and tensile properties of silica-filled natural rubber (NR)/chloroprene rubber (CR) blends were investigated. The ALK was synthesized from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine, and incorporated into the silica-filled NR/CR blends as a non-toxic rubber additive. The ALK loadings were 0.0, 1.0, 3.0, 5.0 and 7.0 phr. It was found that the ALK exhibited shorter scorch and cure times and higher elongation at break of the silica-filled NR/CR blends. The ALK also exhibited higher torque differences, tensile modulus and tensile strength at a 1.0 phr of ALK loading and then decreased with further increases in the ALK loading. The swelling measurement proved that the 1.0 phr loading of ALK caused the highest degree in crosslink density of the silica-filled NR/CR blends.


2005 ◽  
Vol 24 (3) ◽  
pp. 139-158 ◽  
Author(s):  
A.J. Zattera ◽  
O. Bianchi ◽  
R.V.B. Oliveira ◽  
L.B. Canto ◽  
C.A. Ferreira ◽  
...  

This paper presents a characterization of a crosslinked EVA residue (EVA-c) from expanded sheets used in the shoe industry and post-consumer urban-waste polyethylenes regarding their molecular (FTIR), mechanical (tensile and impact tests), morphological (SEM), thermal (DSC, TGA) and dynamic-mechanical (DMTA) properties. For comparison, the properties of the EVA-c and recycled polyethylenes are compared to respective virgin polymers. The recycled polyethylenes generally presented similar properties to the virgin ones. On the other hand, some EVA-c properties differed from virgin ones since it has a high degree of crosslinking and it therefore has a higher tensile modulus and lower elongation at break, notched Izod impact strength and hardness. Additionally, crosslinking was also found to modify the thermal properties (TGA and DSC) of EVA-c.


Author(s):  
Ivanna Baturynska

Additive manufacturing (AM) is an attractive technology for manufacturing industry due to flexibility in design and functionality, but inconsistency in quality is one of the major limitations that does not allow utilizing this technology for production of end-use parts. Prediction of mechanical properties can be one of the possible ways to improve the repeatability of the results. The part placement, part orientation, and STL model properties (number of mesh triangles, surface, and volume) are used to predict tensile modulus, nominal stress and elongation at break for polyamide 2200 (also known as PA12). EOS P395 polymer powder bed fusion system was used to fabricate 217 specimens in two identical builds (434 specimens in total). Prediction is performed for XYZ, XZY, ZYX, and Angle orientations separately, and all orientations together. The different non-linear models based on machine learning methods have higher prediction accuracy compared with linear regression models. Linear regression models have prediction accuracy higher than 80% only for Tensile Modulus and Elongation at break in Angle orientation. Since orientation-based modeling has low prediction accuracy due to a small number of data points and lack of information about material properties, these models need to be improved in the future based on additional experimental work.


Author(s):  
Ahmad Adlie Shamsuri ◽  
Khalina Abdan ◽  
Tatsuo Kaneko

In this prelude study, the gellan gum/kenaf core fiber (KCF) biocomposite films were fabricated with the addition of imidazolium-based ionic liquids such as 1-butyl-3-methylimidazolium chloride (Bmim Cl), 1,3-dimethylimidazolium methylsulphate (Dmim MeSO4), 1-ethyl-3-methylimidazolium acetate (Emim Ac), and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (Emim OTf). The fabrication of the biocomposite films was carried out by mixing KCF and the ionic liquids in an aqueous solution, followed by dissolution of gellan gum in the same solution at a temperature of 90°C. The mixed solution was gelled at room temperature, and the formed gel was dried in an oven at 40°C for 48 hours to obtain a freestanding biocomposite film. The fabricated films were characterized by using a universal testing machine to acquire tensile properties. The tensile test results indicated that the biocomposite film added with Emim Ac possesses a higher tensile extension at maximum (up to 24%) than the biocomposite film without ionic liquid (added with glycerol). In addition, the biocomposite film added with Emim OTf has a higher tensile modulus at maximum (up to 758%) compared to the biocomposite film without ionic liquid. In conclusion, the tensile properties of the gellan gum/KCF biocomposite films can be improved with the addition of Emim-based ionic liquids with different counter anions.


2006 ◽  
pp. 59-70 ◽  
Author(s):  
Milanka Djiporovic ◽  
Jovan Miljkovic ◽  
Eva Dingova

New materials based on wood have the advantage in the sense that their properties can be engineered so as to correspond to user demands. The properties which can be engineered are those relating both to their utilisation and machining, in particular - the tensile strength, elongation at break, modulus of elasticity and impact resistance. The research at the Faculty of Forestry and "Hipol" Chemical Industry related to the new type of wood-polypropylene composite. The content of wood filler was varied in the range between 40% and 70% mass contents of beech wood flour. After the highest tensile strength at 50% of filler content was determined, the effect of the wood filler origin was also examined at this content value. Therefore, wood flour of beech, poplar, acetylated pine and the waste MDF was used. The influence of the composition of the wood filler (beech combined with MDF, poplar and acetylated pine) in comparison with pure polypropylene matrix was also examined, as well as the effect of the type of coupling agent. Hopefully, the results obtained in this study might serve as the initial data for production of easily machined high-strength composites.


Sign in / Sign up

Export Citation Format

Share Document