Characterization of EVA Residues from the Shoe Industry and Post-Consumer Urban-Waste Polyethylenes

2005 ◽  
Vol 24 (3) ◽  
pp. 139-158 ◽  
Author(s):  
A.J. Zattera ◽  
O. Bianchi ◽  
R.V.B. Oliveira ◽  
L.B. Canto ◽  
C.A. Ferreira ◽  
...  

This paper presents a characterization of a crosslinked EVA residue (EVA-c) from expanded sheets used in the shoe industry and post-consumer urban-waste polyethylenes regarding their molecular (FTIR), mechanical (tensile and impact tests), morphological (SEM), thermal (DSC, TGA) and dynamic-mechanical (DMTA) properties. For comparison, the properties of the EVA-c and recycled polyethylenes are compared to respective virgin polymers. The recycled polyethylenes generally presented similar properties to the virgin ones. On the other hand, some EVA-c properties differed from virgin ones since it has a high degree of crosslinking and it therefore has a higher tensile modulus and lower elongation at break, notched Izod impact strength and hardness. Additionally, crosslinking was also found to modify the thermal properties (TGA and DSC) of EVA-c.

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3928
Author(s):  
Vikneswari Sanmuham ◽  
Mohamed Thariq Hameed Sultan ◽  
A. M. Radzi ◽  
Ahmad Adlie Shamsuri ◽  
Ain Umaira Md Shah ◽  
...  

This study aims to investigate the effect of AgNPs on the mechanical, thermal and antimicrobial activity of kenaf/HDPE composites. AgNP material was prepared at different contents, from 0, 2, 4, 6, 8 to 10 wt%, by an internal mixer and hot compression at a temperature of 150 °C. Mechanical (tensile, modulus and elongation at break), thermal (TGA and DSC) and antimicrobial tests were performed to analyze behavior and inhibitory effects. The obtained results indicate that the effect of AgNP content displays improved tensile and modulus properties, as well as thermal and antimicrobial properties. The highest tensile stress is 5.07 MPa and was obtained at 10wt, TGA showed 10 wt% and had improved thermal stability and DSC showed improved stability with increased AgNP content. The findings of this study show the potential of incorporating AgNP concentrations as a secondary substitute to improve the performance in terms of mechanical, thermal and antimicrobial properties without treatment. The addition of AgNP content in polymer composite can be used as a secondary filler to improve the properties.


Jurnal MIPA ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
Engellita Maneking ◽  
Hanny Frans Sangian ◽  
Seni Herlina Juita Tongkukut

Penelitian ini bertujuan untuk membuat dan mengkarakterisasi bioplastik yang memanfaatkan biomassa singkong. Pembuatan bioplastik dilakukan dengan dua variasi campuran yaitu pati singkong sebagai bahan dasar, gliserol + air sebagai plasticizer, asam asetat (cuka) sebagai katalis dan variasi kedua dengan kombinasi yang sama dengan penambahan alkohol sebagai pembanding. Karakterisasi bioplastik meliputi pengamatan permukaan menggunakan SEM; kristalinitas menggunakan XRD; penentuan gugus fungsi menggunakan FTIR; serta menganalisis sifat termal menggunakan TGA dan DSC. Hasil karakterisasi menunjukkan bahwa bioplastik dengan kombinasi pati singkong+ gliserol + air + asam asetat (cuka) + alkohol mempunyai tingkat degradasi yang tinggi. Hal ini sesuai dengan analisis XRD dimana kombinasi ini memiliki nilai kristalinitas rendah. Hasil spektra IR menunjukkan adanya gugus C-H Alkana, C=O ester, dan C-H Alkena. Sementara hasil SEM memperlihatkan permukaan yang rata dan hasil analisis TGA/DSC yang memperlihatkan pengurangan massa sebesar 2,3234 mgThis study aims to create and characterize bioplastics that utilize cassava biomass. The making of bioplastics is carried out for two variations of mixture, namely cassava starch as the material-based, glycerol + water as plasticizer, acetic acid (vinegar) as a catalyst and the second variation with the same combination with the addition of alcohol as a comparison. Characterization of bioplastics includes surface observations using SEM; crystallinity using XRD; determination of functional groups using FTIR; and analyzing of thermal properties using TGA and DSC. The characterization results show that bioplastics with a combination of cassava starch + glycerol + water + acetic acid (vinegar) + alcohol have a high degree of degradation. This is in accordance with the XRD analysis where this combination has a low crystallinity value. IR spectra showed that the presence of C-H Alkana groups, C = O esters, and C-H alkenes. While the SEM results showed a flat surface and the results of the TGA / DSC analysis which showed a mass reduction of 2.3234 mg.This study aims to create and characterize bioplastics that utilize cassava biomass. The making of bioplastics is carried out for two variations of mixture, namely cassava starch as the material-based, glycerol + water as plasticizer, acetic acid (vinegar) as a catalyst and the second variation with the same combination with the addition of alcohol as a comparison. Characterization of bioplastics includes surface observations using SEM; crystallinity using XRD; determination of functional groups using FTIR; and analyzing of thermal properties using TGA and DSC. The characterization results show that bioplastics with a combination of cassava starch + glycerol + water + acetic acid (vinegar) + alcohol have a high degree of degradation. This is in accordance with the XRD analysis where this combination has a low crystallinity value. IR spectra showed that the presence of C-H Alkana groups, C = O esters, and C-H alkenes. While the SEM results showed a flat surface and the results of the TGA / DSC analysis which showed a mass reduction of 2.3234 mg.


2020 ◽  
Vol 1002 ◽  
pp. 47-56
Author(s):  
Abdulkader M. Alakrach ◽  
Nik Noriman Zulkepli ◽  
Awad A. Al-Rashdi ◽  
Sam Sung Ting ◽  
Rosniza Hamzah ◽  
...  

Polylactic acid (PLA) has recently given a huge attention because of its mechanical properties and good physical like good biodegradability and processability, high tensile modulus and strength. In the current research, the researchers utilized sesame oil (SO) and low molecular weight polyethylene glycol (PEG) as hydrophobic and hydrophilic plasticizers, towards improvise the ductility and toughness of PLA. The researchers synthesized nanocomposites by solution casting of the neat PLA/HNTs and PLA blends with weight ratio of (0,10, 20 and 30 wt%) for PEG and (0, 5 and 10 wt%) for SO. The influence of both plasticizers on chemical, thermal and mechanical properties of the nanocomposites were investigated. Characterization of the systems was achieved by mechanical testing and thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR). The FTIR analyses confirmed the existing of hydrogen bonding between PLA and both PEG and SO. significant improvement was shown by the plasticized nanocomposites in elongation at break with the adding of PEG and SO, meanwhile, the plasticized films’ strength were decreased. For the thermal analyses, all the films exhibited lower thermal stability compared to PLA/HNTs film.


2012 ◽  
Vol 626 ◽  
pp. 828-833 ◽  
Author(s):  
Ai Ling Pang ◽  
Hanafi Ismail

The mechanical properties of polypropylene (PP)/waste tire dust (WTD)/kenaf (KNF) composites with and without 3-aminopropyltriethoxysilane (APTES) coupling agent were investigated. The composites were prepared using a Thermo Haake Polydrive internal mixer, where different KNF loading (0, 5, 10, 15, 20 phr) were used. The results revealed that the tensile modulus increased with increasing KNF loading but tensile strength and elongation at break were found decreased. Composites with APTES give higher tensile strength and modulus but lower elongation at break than composites without APTES. The presence of APTES enhanced the interfacial adhesion between PP/WTD matrices and KNF which result in higher tensile strength and modulus of the composites. These findings were supported by the morphological study of the tensile fractured surfaces of the composites.


2018 ◽  
Vol 58 (3) ◽  
pp. 195
Author(s):  
Olusola Femi Olusunmade ◽  
Sunday Zechariah ◽  
Taofeek Ayotunde Yusuf

Water-sachets made from low density polyethylene (LDPE) form a bulk of plastic wastes which creates environmental challenges, while certain species of plants like Imperata cylindrica constitute large portion of weeds on farm lands. As a technological approach to the reduction and utilization of these materials, composites of Imperata cylindrica (IC) particulate and synthetic polymer (from recycled waste water-sachets) were produced and evaluated for several mechanical and physical properties. The production of the composites and testing were done using the standard methods available in the literature. The results showed an increase in tensile modulus, hardness, impact strength, and water absorption of the composite in comparison with unreinforced polymer, as the IC particulate loading increased from 5 wt% to 30 wt%. However, there was a decrease in tensile strength, percentage elongation at break and density of the composite as the particulate loading increased from 5 wt% to 30 wt%. The combination of the recycled waste water-sachets and IC particulate is really promising for composites development. This creates opportunities to reduce LDPE wastes and add economic importance to an otherwise agricultural menace. It will mean creating an economic value from “wastes”.


2018 ◽  
Vol 21 ◽  
pp. 31-42 ◽  
Author(s):  
Mohammad Bellal Hoque ◽  
M. Sahadat Hossain ◽  
Abdul M. Nahid ◽  
Solaiman Bari ◽  
Ruhul A. Khan

Pineapple Leaf Fiber (PALF)-reinforced polypropylene (PP) based composites were prepared successfully by conventional compression molding technique. Different percentages (25,30,35, 40 and 405% by weight) of fiber were used to prepare composites. Tensile Strength (TS), Tensile Modulus (TM), Elongation at Break (Eb %), Bending Strength (BS), Bending Modulus (BM) and Impact Strength (IS) were evaluated. The 45 wt% PALF/PP composite exhibited an increase of 132% TS, 412% TM, 155% BS, 265% BM, and 140% IS with respect to the matrix material (PP). Fourier Transform Infrared (FTIR) Spectroscopy was employed for functional group analysis of PALF/PP composites. For all percentages of fiber, the composites demonstrated lower water uptake. The fabricated composites were immersed in alkali solution (Sodium hydroxide solution, 3%, 5% and 7% by weight) for 60 min and showed low TS, TM and Eb% compared to control composites.


2021 ◽  
Author(s):  
Mohamed BOUTI ◽  
Ratiba IRINISLIMANE ◽  
Naima Belhaneche-Bensemra

Abstract This study aims to improve the ductility of poly (lactic acid) (PLA). For that purpose, bioblends based on PLA and epoxidized vegetable oils (EVO) as bioplasticizers were prepared. Commercial sunflower oil was epoxidized and epoxidized sunflower oil (ESO) was used as plasticizer for PLA. To investigate ESO potential as plasticizer for PLA, its plasticizing effect was compared with commercial epoxidized soya bean oil (ESBO). The plasticizers (ESO or ESBO) were respectively compounded with PLA at 10, 20, 30, and 40 wt%. Mechanical (tensile and Shore D hardness), thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)) and morphological properties (optical microscopy and scanning electron microscopy (SEM)) were characterized. The results showed that the addition of ESO or ESBO to PLA decreased tensile strength and tensile modulus compared to neat PLA but increased elongation at break for which an optimum (9.02%, 15.55% and 33.67% for ESBO, ESO5.5% and ESO6.5% respectively) was reached at a content of 20 wt% of plasticizer. The structures of the obtained plasticized PLA were confirmed by FTIR spectroscopy. DSC showed a clear decrease in the glass transition temperature of PLA and SEM analysis proved successful modification on the PLA brittle morphology with addition of EVO. On the other hand, TGA results revealed significant increase in the thermal stability. Based on the results of this study, ESO exhibited promising results regarding


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


2020 ◽  
Vol 21 (8) ◽  
pp. 741-747
Author(s):  
Liguang Zhang ◽  
Yanan Shen ◽  
Wenjing Lu ◽  
Lengqiu Guo ◽  
Min Xiang ◽  
...  

Background: Although the stability of proteins is of significance to maintain protein function for therapeutical applications, this remains a challenge. Herein, a general method of preserving protein stability and function was developed using gelatin films. Method: Enzymes immobilized onto films composed of gelatin and Ethylene Glycol (EG) were developed to study their ability to stabilize proteins. As a model functional protein, β-glucosidase was selected. The tensile properties, microstructure, and crystallization behavior of the gelatin films were assessed. Result: Our results indicated that film configurations can preserve the activity of β-glucosidase under rigorous conditions (75% relative humidity and 37°C for 47 days). In both control films and films containing 1.8 % β-glucosidase, tensile strength increased with increased EG content, whilst the elongation at break increased initially, then decreased over time. The presence of β-glucosidase had a negligible influence on tensile strength and elongation at break. Scanning electron-microscopy (SEM) revealed that with increasing EG content or decreasing enzyme concentrations, a denser microstructure was observed. Conclusion: In conclusion, the dry film is a promising candidate to maintain protein stabilization and handling. The configuration is convenient and cheap, and thus applicable to protein storage and transportation processes in the future.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 303
Author(s):  
Rokayya Sami ◽  
Schahrazad Soltane ◽  
Mahmoud Helal

In the current work, the characterization of novel chitosan/silica nanoparticle/nisin films with the addition of nisin as an antimicrobial technique for blueberry preservation during storage is investigated. Chitosan/Silica Nanoparticle/N (CH-SN-N) films presented a stable suspension as the surface loads (45.9 mV) and the distribution was considered broad (0.62). The result shows that the pH value was increased gradually with the addition of nisin to 4.12, while the turbidity was the highest at 0.39. The content of the insoluble matter and contact angle were the highest for the Chitosan/Silica Nanoparticle (CH-SN) film at 5.68%. The use of nano-materials in chitosan films decreased the material ductility, reduced the tensile strength and elongation-at-break of the membrane. The coated blueberries with Chitosan/Silica Nanoparticle/N films reported the lowest microbial contamination counts at 2.82 log CFU/g followed by Chitosan/Silica Nanoparticle at 3.73 and 3.58 log CFU/g for the aerobic bacteria, molds, and yeasts population, respectively. It was observed that (CH) film extracted 94 regions with an average size of 449.10, at the same time (CH-SN) film extracted 169 regions with an average size of 130.53. The (CH-SN-N) film presented the best result at 5.19%. It could be observed that the size of the total region of the fruit for the (CH) case was the smallest (1663 pixels), which implied that the fruit lost moisture content. As a conclusion, (CH-SN-N) film is recommended for blueberry preservation to prolong the shelf-life during storage.


Sign in / Sign up

Export Citation Format

Share Document