Comparative study between the effect of Parkia Biglobosa (JACQ) benth and conventional antibiotics against multiple antibiotic resistant uropathogenic bacteria (MARUB)

2018 ◽  
Vol 5 (4) ◽  
Author(s):  
Oludare Temitope Osuntokun ◽  
Taiye Anangwureyi Jemilaiye ◽  
Akinrodoye AR
Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 650
Author(s):  
Kylen E. Ridyard ◽  
Joerg Overhage

The rise in antimicrobial resistant bacteria threatens the current methods utilized to treat bacterial infections. The development of novel therapeutic agents is crucial in avoiding a post-antibiotic era and the associated deaths from antibiotic resistant pathogens. The human antimicrobial peptide LL-37 has been considered as a potential alternative to conventional antibiotics as it displays broad spectrum antibacterial and anti-biofilm activities as well as immunomodulatory functions. While LL-37 has shown promising results, it has yet to receive regulatory approval as a peptide antibiotic. Despite the strong antimicrobial properties, LL-37 has several limitations including high cost, lower activity in physiological environments, susceptibility to proteolytic degradation, and high toxicity to human cells. This review will discuss the challenges associated with making LL-37 into a viable antibiotic treatment option, with a focus on antimicrobial resistance and cross-resistance as well as adaptive responses to sub-inhibitory concentrations of the peptide. The possible methods to overcome these challenges, including immobilization techniques, LL-37 delivery systems, the development of LL-37 derivatives, and synergistic combinations will also be considered. Herein, we describe how combination therapy and structural modifications to the sequence, helicity, hydrophobicity, charge, and configuration of LL-37 could optimize the antimicrobial and anti-biofilm activities of LL-37 for future clinical use.


2020 ◽  
Vol 117 (32) ◽  
pp. 19446-19454 ◽  
Author(s):  
Jayaram Lakshmaiah Narayana ◽  
Biswajit Mishra ◽  
Tamara Lushnikova ◽  
Qianhui Wu ◽  
Yashpal S. Chhonker ◽  
...  

Antimicrobial peptides are important candidates for developing new classes of antibiotics because of their potency against antibiotic-resistant pathogens. Current research focuses on topical applications and it is unclear how to design peptides with systemic efficacy. To address this problem, we designed two potent peptides by combining database-guided discovery with structure-based design. When bound to membranes, these two short peptides with an identical amino acid composition can adopt two distinct amphipathic structures: A classic horizontal helix (horine) and a novel vertical spiral structure (verine). Their horizontal and vertical orientations on membranes were determined by solid-state15N NMR data. While horine was potent primarily against gram-positive pathogens, verine showed broad-spectrum antimicrobial activity. Both peptides protected greater than 80% mice from infection-caused deaths. Moreover, horine and verine also displayed significant systemic efficacy in different murine models comparable to conventional antibiotics. In addition, they could eliminate resistant pathogens and preformed biofilms. Significantly, the peptides showed no nephrotoxicity to mice after intraperitoneal or intravenous administration for 1 wk. Our study underscores the significance of horine and verine in fighting drug-resistant pathogens.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 358
Author(s):  
Maria Loose ◽  
Emmelie Pilger ◽  
Florian Wagenlehner

Given the increasing antimicrobial resistance in urinary tract infections (UTI), alternative strategies need to be investigated. Determination of minimal inhibitory and bactericidal concentrations of essential oils from cajeput, lemongrass, tea tree, and thyme in artificial urine, revealed bactericidal activity of all four tested essential oils against seven uropathogenic species with values ranging between 0.78–50 mg/mL. Tea tree and thyme essential oils were more efficient than lemongrass and cajeput. In addition, antibiotic-resistant strains showed similar susceptibility as antibiotic-sensitive strains, suggesting no cross-resistance between antibiotics and these essential oils. Checkerboard assays revealed a synergistic activity of the combination of thyme and tea tree. Furthermore, the combination with thyme and tea tree essential oils increased the activity of fosfomycin and pivmecillinam, but not nitrofurantoin, against Escherichia coli. This study provides a basis for further investigation of the potential of thyme and tea tree oil as an alternative or additional treatment of UTI.


2020 ◽  
Vol 88 (9) ◽  
Author(s):  
Seána Duggan ◽  
Maisem Laabei ◽  
Alaa Abdulaziz Alnahari ◽  
Eóin C. O’Brien ◽  
Keenan A. Lacey ◽  
...  

ABSTRACT Staphylococcus aureus is a major human pathogen, and the emergence of antibiotic-resistant strains is making all types of S. aureus infections more challenging to treat. With a pressing need to develop alternative control strategies to use alongside or in place of conventional antibiotics, one approach is the targeting of established virulence factors. However, attempts at this have had little success to date, suggesting that we need to better understand how this pathogen causes disease if effective targets are to be identified. To address this, using a functional genomics approach, we have identified a small membrane-bound protein that we have called MspA. Inactivation of this protein results in the loss of the ability of S. aureus to secrete cytolytic toxins, protect itself from several aspects of the human innate immune system, and control its iron homeostasis. These changes appear to be mediated through a change in the stability of the bacterial membrane as a consequence of iron toxicity. These pleiotropic effects on the ability of the pathogen to interact with its host result in significant impairment in the ability of S. aureus to cause infection in both a subcutaneous and sepsis model of infection. Given the scale of the effect the inactivation of MspA causes, it represents a unique and promising target for the development of a novel therapeutic approach.


1980 ◽  
Vol 84 (1) ◽  
pp. 91-96 ◽  
Author(s):  
A. R. Feeney ◽  
E. M. Cooke ◽  
R. Shinebaum

SUMMARYExamination of the faeces of 50 babies born at home showed that bottle-fed babies carried significantly more Klebsiella, Proteus and Pseudomonas spp. and antibiotic-resistant Escherichia coli than did breast-fed babies. Bottle-fed babies born in hospital had a less mixed faecal flora than bottle-fed babies born at home. The possibility that bacterial contamination of home-prepared feeds may account for these differences requires investigation.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Inês Linhares ◽  
Teresa Raposo ◽  
António Rodrigues ◽  
Adelaide Almeida

The aim of this study was to assess the most frequent multidrug resistant (MDR) profiles of the main bacteria implicated in community-acquired urinary tract infections (UTI). Only the MDR profiles observed in, at least, 5% of the MDR isolates were considered. A quarter of the bacteria were MDR and the most common MDR profile, including resistance to penicillins, quinolones, and sulfonamides (antibiotics with different mechanisms of action, all mainly recommended by the European Association of Urology for empirical therapy of uncomplicated UTI), was observed, alone or in association with resistance to other antimicrobial classes, in the main bacteria implicated in UTI. The penicillin class was included in all the frequent MDR profiles observed in the ten main bacteria and was the antibiotic with the highest prescription during the study period. The sulfonamides class, included in five of the six more frequent MDR profiles, was avoided between 2000 and 2009. The results suggest that the high MDR percentage and the high diversity of MDR profiles result from a high prescription of antibiotics but also from antibiotic-resistant genes transmitted with other resistance determinants on mobile genetic elements and that the UTI standard treatment guidelines must be adjusted for the community of Aveiro District.


1999 ◽  
Vol 67 (4) ◽  
pp. 2005-2009 ◽  
Author(s):  
Monisha G. Scott ◽  
Hong Yan ◽  
Robert E. W. Hancock

ABSTRACT A series of α-helical cationic antimicrobial peptide variants with small amino acid changes was designed. Alterations in the charge, hydrophobicity, or length of the variant peptides did not improve the antimicrobial activity, and there was no statistically significant correlation between any of these factors and the MIC forPseudomonas aeruginosa, Escherichia coli, orSalmonella typhimurium. Individual peptides demonstrated synergy with conventional antibiotics against antibiotic-resistant strains of P. aeruginosa. The peptides varied considerably in the ability to bind E. coli O111:B4 lipopolysaccharide (LPS), and this correlated significantly with their antimicrobial activity and ability to block LPS-stimulated tumor necrosis factor and interleukin-6 production. In general, the peptides studied here demonstrated a broad range of activities, including antimicrobial, antiendotoxin, and enhancer activities.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1587
Author(s):  
Feng Wang ◽  
Xiaohang Liu ◽  
Zhengyu Deng ◽  
Yao Zhang ◽  
Xinyu Ji ◽  
...  

With the increasing spread of multidrug-resistant bacterial pathogens, it is of great importance to develop alternatives to conventional antibiotics. Here, we report the generation of a chimeric phage lysin, MLTphg, which was assembled by joining the lysins derived from Meiothermus bacteriophage MMP7 and Thermus bacteriophage TSP4 with a flexible linker via chimeolysin engineering. As a potential antimicrobial agent, MLTphg can be obtained by overproduction in Escherichia coli BL21(DE3) cells and the following Ni-affinity chromatography. Finally, we recovered about 40 ± 1.9 mg of MLTphg from 1 L of the host E. coli BL21(DE3) culture. The purified MLTphg showed peak activity against Staphylococcus aureus ATCC6538 between 35 and 40 °C, and maintained approximately 44.5 ± 2.1% activity at room temperature (25 °C). Moreover, as a produced chimera, it exhibited considerably improved bactericidal activity against Staphylococcus aureus (2.9 ± 0.1 log10 reduction was observed upon 40 nM MLTphg treatment at 37 °C for 30 min) and also a group of antibiotic-resistant bacteria compared to its parental lysins, TSPphg and MMPphg. In the current age of growing antibiotic resistance, our results provide an engineering basis for developing phage lysins as novel antimicrobial agents and shed light on bacteriophage-based strategies to tackle bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document