scholarly journals Potential of the biodegradability and characteristics of bio-plastic from microalgae residues

Algologia ◽  
2021 ◽  
Vol 31 (1) ◽  
pp. 80-92
Author(s):  
Y.C. Wong ◽  
◽  
D.N. Roma ◽  

Petroleum-based plastic has been widely used in many industries. However, it takes hundreds of years to degrade and causes widespread pollution to our environment. These problems led to the invention of bioplastics, which were comprised of natural biopolymers made from starch. The production of bioplastics from food-based starches such as tapioca and corn created competition between food and bioplastic production industries. Hence, this research study focuses on producing bioplastic from microalgae residue, which is a non-food based raw material that uses four different types of plasticizers: glycerol, sorbitol, glutaraldehyde and polyethylene glycol (PEG). Microalgae species for identification were obtained from the fish pond at the University Malaysia of Kelantan, before cultivating the species for 14 days. The microalgae residues were extracted through the centrifugation process. Three species were identified under the light microscope, Chlorella sp., Scenedesmus sp. and Monoraphidium sp. The production of bioplastic involved a manual stirring method using a hotplate magnetic stirrer, followed by drying the bioplastic in an oven at 60 oC. Results obtained showed that sorbitol and glycerol from microalgae are suitable to be used as a plasticizer for the production of bioplastic, however glutaraldehyde and PEG are not suitable. Bioplastics that used PEG and glutaraldehyde became cracked and brittle after the drying process. The characterization of bioplastics includes universal tensile testing machines, Fourier-transform infrared analysis and biodegradability tests being processed//undertaken on glycerol-based and sorbitol based bioplastic. Characterization of bioplastics proved that both glycerol and sorbitol have high potential for applications in daily human life. Bioplastics which used sorbitol as a plasticizer could be used in can be applied the production of plastic goods such as toys and household items due to its good resistance toward stress and minimal flexibility. Meanwhile bioplastics which used glycerol as a plasticizer could be applied to the production of plastic bags and plastic food wrap due to its elastic and flexible nature.

2012 ◽  
Vol 549 ◽  
pp. 382-386
Author(s):  
Hui Juan Xiu ◽  
Qing Han ◽  
Ke Peng ◽  
Kun Zhang

Natural plant fibers possess a lot of advantages in chemical modification, such as easy process, extensive intensity range, better selectivity, good resistance to water, biodegradability and photo-degradability, that makes the etherification and esterification wood has good development prospect. In this paper, softwood fibers were used as raw material and epoxy chloropropane as modifier. The influences of epoxy chloropropane dosage, reaction time and temperature, and the dosage of NaOH on the modification were analyzed. Simultaneity, an FTIR study was performed to show the partial substitution of hydroxyl groups by the epoxy group. And surface morphology of fibers modified was characterized by scanning electron microscope.


2016 ◽  
Vol 3 (2) ◽  
Author(s):  
Diego Herrero-Alonso ◽  
Antonio Tarriño-Vinagre ◽  
Ana Neira-Campos ◽  
Natividad Fuertes-Prieto

This work provides the keys to the mineralogical and geochemical characterization of black chert from the Vegamián Fm. This formation crops out throughout the whole of the Cantabrian Zone (of Palaeozoic age), one of the geological zones of the Cantabrian Mountains (NW Spain). The geographical distribution of this formation is very wide, surfacing in the provinces of León, Asturias, Palencia and Cantabria.This variety of chert had been included within the group generically known as ‘black chert’, a macrogroup including different types of chert that appear in different Palaeozoic formations in the area and which share a characteristic black colour at the macroscopic level. The characterisation presented here has enabled us to distinguish it from other varieties. In this study, Vegamián chert has been divided into two different groups depending on their textural, mineralogical, geochemical and thermal propierties. Type 1, the most suitable for knapping, is characterized by high content in silica (>97%), laminated matrix and, occasionally, ghost of radiolarians.  In addition, the characteristics specific to this chert make it suitable for lithic knapping processes. To confirm its use by prehistoric populations, this chert will be compared to that found in two Mesolithic sites, the caves of La Uña and El Espertín (León, south versant of the Cantabrian Mountains), the raw materials from which are currently under study.


2018 ◽  
Vol 8 (01) ◽  
pp. 21 ◽  
Author(s):  
Chandra Apriana Purwita ◽  
Susi Sugesty

Preparation and Characterization of Long Fiber Dissolving Pulp from Spiny Bamboo (Bambusa blumeana)The need for long fiber dissolving pulp in Indonesia can only be met from imports. Bamboo is a nonwood plant and known as source of long fiber. This research aims to study the potential of spiny bamboo to be used as raw material for producing long fiber dissolving pulp. This research was conducted using two different types of raw materials preparation to produce bamboo chip and decorticated bamboo. The pulping process is carried out by pre-hydrolysis kraft and bleaching performed with two different bleaching sequences, i.e Do ED1 D2 and Do EpD1 D2 . Based on the experimental results, spiny bamboo has good potential to be used as raw material for dissolving pulp. Spiny bamboo belongs to long fibers with an average fiber length of 2.46 mm. The dissolving quality depends on the preparation of the raw material and the bleaching sequence. The yield of spiny bamboo dissolving pulp ranged from 37.97 - 40.76% with alpha cellulose content of 94.88 - 98.67%, and viscosity of 16.43 - 25.75 cP. Decorticated bamboo with bleaching sequence of Do EpD1 D2 produced the highest quality of dissolving pulp with the highest brightness and alpha cellulose were 89.61% ISO and 98.67%, respectively.AbstrakKebutuhan dissolving pulp serat panjang di Indonesia hanya dapat dipenuhi melalui impor. Bambu adalah tanaman nonkayu dan dikenal sebagai sumber serat panjang. Penelitian ini bertujuan untuk mempelajari potensi bambu duri untuk dijadikan bahan baku pembuatan dissolving pulp serat panjang. Penelitian ini dilakukan dengan dua jenis persiapan bahan baku yang berbeda untuk menghasilkan serpih bambu dan bambu dekortikasi. Proses pemasakan dilakukan dengan proses pra-hidrolisis kraft dan pemutihan dilakukan dengan dua urutan pemutihan yang berbeda, yaitu  DoED1D2 dan DoEpD1D2. Berdasarkan hasil penelitian, bambu duri memiliki potensi yang baik untuk digunakan sebagai bahan baku pembuatan dissolving pulp. Bambu duri tergolong serat panjang dengan panjang serat rata-rata 2,46 mm. Kualitas dissolving pup yang dihasilkan tergantung dari persiapan bahan baku dan urutan pemutihan. Rendemen dissolving pulp bambu duri berkisar 37,97 - 40,76%, dengan kandungan selulosa alfa 94,88 - 98,67%, dan viskositas 16,43 - 25,75 cP. Bambu dekortikasi dengan urutan pemutihan DoEpD1D2 menghasilkan dissolving pulp paling unggul dengan derajat cerah dan selulosa alfa tertinggi berturut-turut 89,61 %ISO dan 98,67%.Kata kunci: dissolving pulp, bambu duri (Bambusa blumeana), serpih bambu, bambu dekortikasi, prahidrolisis kraft 


Moringa oleifera (L.) is one most nutritious plant . that use in different types of drugs preparation. In this investigation we have view the different author reported the different property of this plant such as Phytochemical content , biochemistry, hypersterolemia, hypolipidemic ,amino acid, protein, lipid, carbohydrate vitamins , separation of biochemical by chromatography HPLC and TLC. We have to also see that the different types element are present essential for human growth and development such Nitrogen, Calcium, Phosphorous, Magnesium, Iron, Copper, iron etc. the number of uses so this plant called golden tree and number of report available Antimicrobial, Antifungal, Antibacterial, anti-inflammatory, anthelminthic ,anticancer activity, Free scavenging activity. Its used as food source , and number industry raw material food industry .There number have reported that application of moringa plants in human life such as used to food, used cure disease, food product preparation, medicine preparation . It is popularly called, has been found useful both medicinally and economically. In a plants different chemical component contained in different plants root, stem ,leaf ,fruits and seeds. The Moringa plant is one important nutritious plant in sense of biochemicals , growth nutrients ,vitamins enzyme and their different biological property. Its intensive importance so it’s a part of food in some Asian country its pods eating as vegetable due to its nutritive value


Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 2513-2530
Author(s):  
Rodrigues ◽  
Santos ◽  
Melo ◽  
Otero ◽  
Vilarigues

This paper presents the first systematic investigation of hand-painted magic lantern glass slides using multi-analytical techniques combined with a critical analysis of historical written sources of the painting materials and techniques used to produce them. The magic lantern was an optical instrument used from the seventeenth to the twentieth century that attained great success and impact on the entertainment industry, science, religion, and advertisement industry. The glass, colorants, and organic media of five magic lantern slides from the Museum of Natural History and Science of the University of Lisbon were studied. By means of energy-dispersive X-ray fluorescence spectrometry, the glass was characterized and the oxide quantification unveiled that the glass substrate was possibly produced between 1870 and 1930. Ultraviolet-Visible, Raman and Fourier transform infrared spectroscopies allowed the characterization of the colorants: Prussian blue, an anthraquinone red lake pigment of animal origin (such as cochineal), an unidentified organic yellow, and carbon black. The remaining colors were achieved through mixtures of the pure pigments. Infrared analysis detected a complex fingerprint in all colors, nevertheless, a terpenoid resin such as shellac was identified. Metal carboxylates were also detected, contributing to the assessment of the state of conservation of the paints.


2017 ◽  
Vol 11 (1) ◽  
pp. 334-342
Author(s):  
Mercedes Del Río Merino ◽  
Jaime Santa Cruz Astorqui ◽  
Paola Villoria Sáez ◽  
Carmen Viñas Arrebola ◽  
Antonio Rodríguez Sánchez ◽  
...  

Introduction:The lack of treatment of construction demolition waste (CDW) is a problem that must be solved immediately. It is estimated that the unused CDW generates an increase in the use of new materials close to 20% of the total materials consumed worldwide. Because of that, the use of CDW in building materials is an interesting alternative to guarantee their application. In the last years, many research works are being carried out in order to analyze the viability of using CDW as a substitute for the traditional raw materials that cause high environmental impact.However, much remains to be done, because these works generally characterize materials but not specific applications that allow the agents of construction to provide assurance required by the projects.Aim:The research group TEMA from the School of Building Construction (UPM) is working on this topic with the University of Seville, University of Burgos and the University of Zaragoza, developing a research project called "Waste to resources (W2R)". The main goal of the project is to develop new materials, elements and construction systems, manufactured with CDW generated in building retrofitting works, to be used in improving the energy efficiency of buildings.Results:In this article, some of the results of the W2R project are presented, namely the identification, quantification and characterization of the types of waste generated in renovation works to improve the energy efficiency of buildings and their possible applications as fillers in plasters to improve the performance of the original materials with a significant reduction in raw material, and thus reduce the environmental impact.Conclusions:Concrete and ceramics are the most commonly generated waste categories in building rehabilitation works to improve the energy efficiency of the buildings. These waste categories are generated during the preparation of the surface prior to the execution of the works. Also, mixed waste from insulation materials can be highlighted due to its volume.


Among all the noteworthy preservation techniques for food items, drying is considered to be one of the most consequential one. Different types of drying systems exist bottomed on the manner in which air flow takes place in the drying chamber and method of utilising incident solar radiation for drying. An indirect forced convection solar drying system with a dryer of varying cross section was considered in the present work. Banana (Musa Paradisiaca) was the raw material to be dried. Performance of the system at discharges of 0.03 and 0.02 kg/s, respectively for the specified mass of product was obtained and compared with open sun drying in the range of 66.3% - 9.9% of wet basis moisture content. Drying process in chamber drying was completed four and two hours earlier than open sun drying at discharges of 0.03 kg/s and 0.02 kg/s, respectively. Cumulative and tray wise instantaneous drying rates were found and obtained maximum drying rates of 75 g/h and 15 g/h, respectively. Trend of moisture ratio against time was obtained by polynomial fitting which has satisfactory agreement with available mathematical model.


Author(s):  
J.B. Posthill ◽  
R.P. Burns ◽  
R.A. Rudder ◽  
Y.H. Lee ◽  
R.J. Markunas ◽  
...  

Because of diamond’s wide band gap, high thermal conductivity, high breakdown voltage and high radiation resistance, there is a growing interest in developing diamond-based devices for several new and demanding electronic applications. In developing this technology, there are several new challenges to be overcome. Much of our effort has been directed at developing a diamond deposition process that will permit controlled, epitaxial growth. Also, because of cost and size considerations, it is mandatory that a non-native substrate be developed for heteroepitaxial nucleation and growth of diamond thin films. To this end, we are currently investigating the use of Ni single crystals on which different types of epitaxial metals are grown by molecular beam epitaxy (MBE) for lattice matching to diamond as well as surface chemistry modification. This contribution reports briefly on our microscopic observations that are integral to these endeavors.


2012 ◽  
Vol 58 (4) ◽  
pp. 425-431 ◽  
Author(s):  
D. Selvathi ◽  
N. Emimal ◽  
Henry Selvaraj

Abstract The medical imaging field has grown significantly in recent years and demands high accuracy since it deals with human life. The idea is to reduce human error as much as possible by assisting physicians and radiologists with some automatic techniques. The use of artificial intelligent techniques has shown great potential in this field. Hence, in this paper the neuro fuzzy classifier is applied for the automated characterization of atheromatous plaque to identify the fibrotic, lipidic and calcified tissues in Intravascular Ultrasound images (IVUS) which is designed using sixteen inputs, corresponds to sixteen pixels of instantaneous scanning matrix, one output that tells whether the pixel under consideration is Fibrotic, Lipidic, Calcified or Normal pixel. The classification performance was evaluated in terms of sensitivity, specificity and accuracy and the results confirmed that the proposed system has potential in detecting the respective plaque with the average accuracy of 98.9%.


Sign in / Sign up

Export Citation Format

Share Document