Estimation of Total Phenols and Flavonoids in Selected Indian Traditional Plants

Author(s):  
DEEPAK KUMAR ◽  
ANUPAM JAMWAL ◽  
REECHA MADAAN ◽  
SURESH KUMAR
Keyword(s):  
2017 ◽  
Vol 61 (4) ◽  
pp. 53-58
Author(s):  
I. Strapáč ◽  
M. Kuruc ◽  
M. Baranová

AbstractExtracts of the fruiting bodies of the Oyster mushroom (Pleurotus ostreatus) grown on wood substrates (beech, oak, linden, walnut, poplar) and extracts of the fruiting bodies of the Oyster mushroom (Pleurotus pulmonarius) grown in nature on aspen wood were used to determine the total phenols, total flavonoids, lycopene and β-carotene. The content of individual antioxidants varies considerably depending, not only on the substrate, but also on the extracting agents. The highest content of total phenols and total flavonoids was found in methanol and water extracts of the fruiting bodies of the Oyster mushrooms grown on oak and linden substrates. The maximum content of lycopene and β-carotene was determined in acetone and n-hexane (ratio 4 : 6) extracts of the fruiting bodies of the Oyster mushroom grown on an oak block. The results obtained in this study demonstrated that the quantitative and also probably the qualitative composition of the antioxidants in the fruiting bodies of Oyster mushrooms depended considerably on the substrate composition.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1349
Author(s):  
Ahlam Khalofah ◽  
Mona Kilany ◽  
Hussein Migdadi

Heavy metals are primarily generated and deposited in the environment, causing phytotoxicity. This work evaluated fenugreek plants’ morpho-physiological and biochemical responses under mercury stress conditions toward Ag nanoparticles and Sphingobacterium ginsenosidiumtans applications. The fabrication of Ag nanoparticles by Thymus vulgaris was monitored and described by UV/Vis analysis, FTIR, and SEM. The effect of mercury on vegetative growth was determined by measuring the root and shoots length, the number and area of leaves, the relative water content, and the weight of the green and dried plants; appraisal of photosynthetic pigments, proline, hydrogen peroxide, and total phenols content were also performed. In addition, the manipulation of Ag nanoparticles, S. ginsenosidiumtans, and their combination were tested for mercury stress. Here, Ag nanoparticles were formed at 420 nm with a uniform cuboid form and size of 85 nm. Interestingly, the gradual suppression of vegetal growth and photosynthetic pigments by mercury, Ag nanoparticles, and S. ginsenosidiumtans were detected; however, carotenoids and anthocyanins were significantly increased. In addition, proline, hydrogen peroxide, and total phenols content were significantly increased because mercury and S. ginsenosidiumtans enhance this increase. Ag nanoparticles achieve higher levels by the combination. Thus, S. ginsenosidiumtans and Ag nanoparticles could have the plausible ability to relieve and combat mercury’s dangerous effects in fenugreek.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Alejandro Rubio-Melgarejo ◽  
Rosendo Balois-Morales ◽  
Yolotzin Apatzingan Palomino-Hermosillo ◽  
Graciela Guadalupe López-Guzmán ◽  
José Carmen Ramírez-Ramírez ◽  
...  

This work evaluates the effect of the pathogens Colletotrichum siamense and C. gloeosporioides on the response of soursop fruits. The bioactive compounds (total phenols, flavonoids, anthraquinones, coumarins, steroids, terpenoids, alkaloids, and saponins) were evaluated qualitatively in soursop pulp. Positive phytochemicals and antioxidant activity (DPPH•, ABTS•+, and FRAP) were quantified at day zero, one, three, and five. Fruits treated with C. gloeosporioides showed higher disease severity (P<0.05). Early fruit response (day one) was observed with both pathogens, increased the concentration of saponins and repressed the production of quercetin 3-O-glucoside (P<0.05). Likewise, C. siamense decreased total soluble phenols and flavonoids and increased antiradical activity DPPH•. Besides, C. gloeosporioides decreased the levels of kaempferol 3-O-rutinoside and ferulic acid (P<0.05). Regarding the late response (day three), both pathogens decreased the concentration of saponins and increased flavonoids and phytosterols (P<0.05). Nevertheless, C. siamense increased the levels of total soluble phenols, p-coumaric acid, kaempferol, and antiradical activity FRAP (P<0.05). Also, C. gloeosporioides repressed the production of quercetin 3-O-glucoside at day five (P<0.05). Soursop fruits had a response to the attack of Colletotrichum during ripening at physicochemical and oxidative levels, which is associated with the production of compounds related to the development inhibition of pathogens. Even so, soursop fruits showed higher susceptibility to C. gloeosporioides and higher sensitivity to the attack of C. siamense.


2021 ◽  
pp. 130745
Author(s):  
Róża Sawczuk ◽  
Joanna Karpinska ◽  
Diana Filipowska ◽  
Andrzej Bajguz visualization ◽  
Marta Hryniewicka

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1198
Author(s):  
Elías Arilla ◽  
Purificación García-Segovia ◽  
Javier Martínez-Monzó ◽  
Pilar Codoñer-Franch ◽  
Marta Igual

Resistant maltodextrin (RMD) is a water-soluble and fermentable functional fiber. RMD is a satiating prebiotic, reducer of glucose and triglycerides in the blood, and promoter of good gut health, and its addition to food is increasingly frequent. Therefore, it is necessary to study its potential effects on intrinsic bioactive compounds of food and their bioaccessibility. The aim of this study was to evaluate the effect of adding RMD on the bioactive compounds of pasteurized orange juice with and without pulp, and the bioaccessibility of such compounds. RMD was added at different concentrations: 0 (control sample), 2.5%, 5%, and 7.5%. Ascorbic acid (AA) and vitamin C were analyzed using HPLC, whereas total phenols, total carotenoids (TC), and antioxidant capacity were measured using spectrophotometry. After that, sample in vitro digestibility was assessed using the standardized static in vitro digestion method. The control orange juice with pulp presented significantly higher values of bioactive compounds and antioxidant capacity than the control orange juice without pulp (p < 0.05). RMD addition before the juice pasteurization process significantly protected all bioactive compounds, namely total phenols, TC, AA, and vitamin C, as well as the antioxidant capacity (AC) (p < 0.05). Moreover, this bioactive compound protective effect was higher when higher RMD concentrations were added. However, RMD addition improved phenols and vitamin C bioaccessibility but decreased TC and AA bioaccessibility. Therefore, the AC value of samples after gastrointestinal digestion was slightly decreased by RMD addition. Moreover, orange pulp presence decreased total phenols and TC bioaccessibility but increased AA and vitamin C bioaccessibility.


2011 ◽  
Vol 140 ◽  
pp. 324-328 ◽  
Author(s):  
Li Dan Liu ◽  
Jian Ming ◽  
Kai Fang Zeng ◽  
Chen Liao

In order to learn effective methods for oleocellosis control, the induction of disease resistance and reactive oxygen species metabolism in valencia oranges by postahrvest polyamines treatment was investigated in this study. As showed in the result, polyamines and polyamine with hot water treatment had a significant effect on controlling oleocellosis during storage. Compared with control, MDA content in polyamine-treated fruit was rapidly decreased, but catalase and peroxidase activity had a sudden increase. Moreover, fruit in polyamines and polyamines with HWT treatment had a rapid increase in ASA-GSH anti-oxidation ability, and total phenols content in treated fruit also increased suddenly before 9 d, then followed by a sudden decline. Fruit in polyamines and polyamine with HWT treatment had a lower polyphenoloxidase (PPO) activity. Thus, polyamines may enhance antioxidation of citrus peel to improve disease resistance and decrease PPO activity to produce little rind spot during storage.


Author(s):  
Luciana Igarashi-Mafra ◽  
Edmilson César Bortoletto ◽  
Maria Angelica Simões Dornella Barros ◽  
Amanda Cristina Alfredo Contrucci Sorbo ◽  
Naiara Aguiar Galliani ◽  
...  

Effluents from radiographic X-ray film developing processes feature a high contaminant load (COD about 70000 mg/L and total phenols concentration about 16956 mg/L). Photo-Fenton's are potentially useful oxidation processes for destroying toxic organic compounds in water. In these reactions, hydrogen peroxide is combined with ferrous or ferric iron in the presence of light to generate hydroxyl radicals (·OH). The photo-Fenton process was explored as a photochemical treatment to degrade wastewater from radiographic X-ray film developing processes coming from odontologic clinics. A response surface methodology was applied to optimize the photo-Fenton oxidation process conditions using total phenol removal as the target parameter to be optimized, and the reagent concentrations, as related to the initial concentration of organic matter in the effluent, and time and pH as the control factors to be optimized. The best results in terms of maximal total phenol removal and economic process were achieved when wastewater samples were treated at pH 5 in the presence of hydrogen peroxide and iron in the ratios [total phenols]:[H2O2] 1:3 w/w and [Fe2+]:[H2O2] 1:18 w/w and time 1 h.


2009 ◽  
Vol 2 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Nurten Ozsoy ◽  
Eda Candoken ◽  
Nuriye Akev

In order to demonstrate whether the known biological effects ofAloe vera(L.) Burm. fil. could correlate with the antioxidant activity of the plant, the antioxidant activity of the aqueous leaf extract was investigated. The present study demonstrated that the aqueous extract fromA. veraleaves contained naturally occuring antioxidant components, including total phenols, flavonoids, ascorbic acid, β-carotene and α-tocopherol. The extract exhibited inhibitory capacity against Fe3+/ascorbic acid induced phosphatidylcholine liposome oxidation, scavenged stable DPPH•, ABTS•+and superoxide anion radicals, and acted as reductant. In contrast, the leaf inner gel did not show any antioxidant activity. It was concluded that the known beneficial effects ofAloe veracould be attributed to its antioxidant activity and could be related to the presence of phenolic compounds and antioxidant vitamins.


Sign in / Sign up

Export Citation Format

Share Document