scholarly journals Assessment of River Water Inflow into the Sasyk Estuary-Reservoir According to RCP4.5 and RCP8.5 Climate Change Scenarios for 2021-2050

2021 ◽  
Vol 30 (2) ◽  
pp. 315-325
Author(s):  
Nataliia S. Loboda ◽  
Yurii S. Tuchkovenko ◽  
Mykhailo О. Kozlov ◽  
Iryna V. Katynska

The paper relevancy is determined by the need to substantiate the feasibility of restoring the ecosystem of the Sasyk estuary after its transformation into a reservoir (1978) and the unsuccessful desalination by the Danube waters for irrigation purposes. The paper is aimed at assessment of the possible inflow of fresh water to the Sasyk estuary from the Kohylnyk and Sarata rivers and their role in the formation of fresh water balance in the first half of the 21st century according to the climate change scenarios RCP4.5 and RCP8.5. The main calculation method is the ‘climate-runoff’ model, which uses meteorological data as input data. Estimates of freshwater inflow into the estuary-reservoir are provided for various calculation periods: before 1989 (before the beginning of significant climate change in the North-Western Black Sea Region); in the period of 1989-2018 according to the hydrometeorological observations; in 2021-2050, according to the averaged data from 14 runs of scenarios RCP4.5 and RCP8.5 under the EVRO-CORDEX project. Estimates of the average long-term values of freshwater inflow in natural conditions and the conditions transformed by water management activity were obtained for each calculation period. It is found that owing to changes in the regional climate for the period of 2021-2050, the total inflow of freshwater from rivers to the estuary in natural conditions will decrease by 23.5 % (by RCP4.5) and by 38.5 % (by RCP8.5) in comparison with the reference period (before 1989). Taking into account the impact of artificial reservoirs, the reduction in the river runoff will be 52.1 % (by RCP4.5) and 64.7 % (by RCP8.5). It is defined, that in case of renaturalization of the Sasyk reservoir into the estuary and the water inflow cut-off from the Danube river, the changes in climatic conditions expected in the first half of the 21st century, combined with water management activity, will result in the increased deficit of annual freshwater balance of the Sasyk reservoir up to 62 % under the RCP4.5 scenario and up to 75 % under the RCP8.5 scenario compared to the period before the emergence of climate change (before 1989). This change must be considered in scientific substantiation of the project on a reversion of the Sasyk Reservoir to the original status of the estuary to ensure such conditions of water exchange with the sea (for compensation of the water balance deficit), which will prevent the long-term trend of salinization.

2012 ◽  
Vol 32 ◽  
pp. 15-21 ◽  
Author(s):  
K. Förster ◽  
M. Gelleszun ◽  
G. Meon

Abstract. In order to simulate long-term water balances hydrologic models have to be parameterized for several types of vegetation. Furthermore, a seasonal dependence of vegetation parameters has to be accomplished for a successful application. Many approaches neglect inter-annual variability and shifts due to climate change. In this paper a more comprehensive approach from literature was evaluated and applied to long-term water balance simulations, which incorporates temperature, humidity and maximum bright sunshine hours per day to calculate a growing season index (GSI). A validation of this threshold-related approach is carried out by comparisons with normalized difference vegetation index (NDVI) data and observations from the phenological network in the state of Lower Saxony. The annual courses of GSI and NDVI show a good agreement for numerous sites. A comparison with long-term observations of leaf onset and offset taken from the phenological network also revealed a good model performance. The observed trends indicating a shift toward an earlier leaf onset of 3 days per decade in the lowlands were reproduced very well. The GSI approach was implemented in the hydrologic model Panta Rhei. For the common vegetation parameters like leaf area index, vegetated fraction, albedo and the vegetation height a minimum value and a maximum value were defined for each land surface class. These parameters were scaled with the computed GSI for every time step to obtain a seasonal course for each parameter. Two simulations were carried out each for the current climate and for future climate scenarios. The first run was parameterized with a static annual course of vegetation parameters. The second run incorporates the new GSI approach. For the current climate both models produced comparable results regarding the water balance. Although there are no significant changes in modeled mean annual evapotranspiration and runoff depth in climate change scenarios, mean monthly values of these water balance components are shifted toward a lower runoff in spring and higher values during the winter months.


Hydrology ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 37 ◽  
Author(s):  
Kariem A. Ghazal ◽  
Olkeba Tolessa Leta ◽  
Aly I. El-Kadi ◽  
Henrietta Dulai

Hydrological modeling is an important tool that can be used to assess water resources’ availability and sustainability that are necessary for food security and ecological health of coastal regions. In this study, we assessed the impacts of land use and climate changes on water balance components (WBCs) of the Heeia coastal wetland. We developed a Soil and Water Assessment Tool (SWAT) model to capture the unique characteristics of the Hawaiian Islands, including its volcanic soil’s nature and high initial infiltration rates. We used the sequential uncertainty fitting algorithm to assess the sensitivity and uncertainty of WBCs under different climate change scenarios. Results of the statistical analysis of daily streamflow simulations showed that the model performance was within the generally acceptable criteria. Under future climate scenarios, rainfall change was the determinant factor most negatively impacting WBCs. Recharge and baseflow components had the highest sensitivity to the combined effects of land use and climate changes, especially during dry season. The uncertainty analysis indicated that the streamflow is projected to slightly increase by the middle of 21st century, but expected to decline by 40% during the late 21st century of Representative Concentration Pathways (RCP) 8.5.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 453 ◽  
Author(s):  
Brandi Gaertner ◽  
Rodrigo Fernandez ◽  
Nicolas Zegre

Forested catchments are critical sources of freshwater used by society, but anthropogenic climate change can alter the amount of precipitation partitioned into streamflow and evapotranspiration, threatening their role as reliable fresh water sources. One such region in the eastern US is the heavily forested central Appalachian Mountains region that provides fresh water to local and downstream metropolitan areas. Despite the hydrological importance of this region, the sensitivity of forested catchments to climate change and the implications for long-term water balance partitioning are largely unknown. We used long-term historic (1950–2004) and future (2005–2099) ensemble climate and water balance data and a simple energy–water balance model to quantify streamflow sensitivity and project future streamflow changes for 29 forested catchments under two future Relative Concentration Pathways. We found that streamflow is expected to increase under the low-emission pathway and decrease under the high-emission pathway. Furthermore, despite the greater sensitivity of streamflow to precipitation, larger increases in atmospheric demand offset increases in precipitation-induced streamflow, resulting in moderate changes in long-term water availability in the future. Catchment-scale results are summarized across basins and the region to provide water managers and decision makers with information about climate change at scales relevant to decision making.


2015 ◽  
Vol 12 (9) ◽  
pp. 9247-9293
Author(s):  
J. Fabre ◽  
D. Ruelland ◽  
A. Dezetter ◽  
B. Grouillet

Abstract. This paper assesses the sustainability of planned water uses in mesoscale river basins under multiple climate change scenarios, and contributes to determining the possible causes of unsustainability. We propose an assessment grounded in real-world water management issues, with water management scenarios built in collaboration with local water agencies. Furthermore we present an analysis through indicators that relate to management goals and present the implications of climate uncertainty for our results, furthering the significance of our study for water management. A modeling framework integrating hydro-climatic and human dynamics and accounting for interactions between resource and demand was developed and applied in two basins of different scales and with contrasting water uses: the Herault (2500 km2, France) and the Ebro (85 000 km2, Spain) basins. Natural streamflow was evaluated using a conceptual hydrological model. A demand-driven reservoir management model was designed to account for streamflow regulations from the main dams. Human water demand was estimated from time series of demographic, socio-economic and climatic data. Environmental flows were accounted for by defining streamflow thresholds under which withdrawals were strictly limited. Finally indicators comparing water availability to demand at strategic resource and demand nodes were computed. This framework was applied under different combinations of climatic and water use scenarios for the mid-21st century to differentiate the impacts of climate- and human-induced changes on streamflow and water balance. Results showed that objective monthly environmental flows would be guaranteed in current climate conditions in both basins, yet in several areas this could imply limiting human water uses more than once every five years. The impact of the tested climate projections on both water availability and demand could question the water allocations and environmental requirements currently planned for the coming decades. Water shortages for human use could become more frequent and intense, and the pressure on water resources and aquatic ecosystems could intensify. The causes of unsustainability vary across sub-basins and scenarios, and in most areas results are highly dependent on the climate change scenario.


Author(s):  
Eulalia Gómez Martín ◽  
María Máñez Costa ◽  
Sabine Egerer ◽  
Uwe Schneider

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1668 ◽  
Author(s):  
J. Zabalza-Martínez ◽  
S. Vicente-Serrano ◽  
J. López-Moreno ◽  
G. Borràs Calvo ◽  
R. Savé ◽  
...  

This paper evaluates the response of streamflow in a Mediterranean medium-scaled basin under land-use and climate change scenarios and its plausible implication on the management of Boadella–Darnius reservoir (NE Spain). Land cover and climate change scenarios supposed over the next several decades were used to simulate reservoir inflow using the Regional Hydro-Ecologic Simulation System (RHESsys) and to analyze the future impacts on water management (2021–2050). Results reveal a clear decrease in dam inflow (−34%) since the dam was operational from 1971 to 2013. The simulations obtained with RHESsys show a similar decrease (−31%) from 2021 to 2050. Considering the ecological minimum flow outlined by water authorities and the projected decrease in reservoir’s inflows, different water management strategies are needed to mitigate the effects of the expected climate change.


2015 ◽  
Vol 73 (5) ◽  
pp. 1357-1369 ◽  
Author(s):  
Jose A. Fernandes ◽  
Susan Kay ◽  
Mostafa A. R. Hossain ◽  
Munir Ahmed ◽  
William W. L. Cheung ◽  
...  

Abstract The fisheries sector is crucial to the Bangladeshi economy and wellbeing, accounting for 4.4% of national gross domestic product and 22.8% of agriculture sector production, and supplying ca. 60% of the national animal protein intake. Fish is vital to the 16 million Bangladeshis living near the coast, a number that has doubled since the 1980s. Here, we develop and apply tools to project the long-term productive capacity of Bangladesh marine fisheries under climate and fisheries management scenarios, based on downscaling a global climate model, using associated river flow and nutrient loading estimates, projecting high-resolution changes in physical and biochemical ocean properties, and eventually projecting fish production and catch potential under different fishing mortality targets. We place particular interest on Hilsa shad (Tenualosa ilisha), which accounts for ca. 11% of total catches, and Bombay duck (Harpadon nehereus), a low price fish that is the second highest catch in Bangladesh and is highly consumed by low-income communities. It is concluded that the impacts of climate change, under greenhouse emissions scenario A1B, are likely to reduce the potential fish production in the Bangladesh exclusive economic zone by <10%. However, these impacts are larger for the two target species. Under sustainable management practices, we expect Hilsa shad catches to show a minor decline in potential catch by 2030 but a significant (25%) decline by 2060. However, if overexploitation is allowed, catches are projected to fall much further, by almost 95% by 2060, compared with the Business as Usual scenario for the start of the 21st century. For Bombay duck, potential catches by 2060 under sustainable scenarios will produce a decline of <20% compared with current catches. The results demonstrate that management can mitigate or exacerbate the effects of climate change on ecosystem productivity.


2021 ◽  
Vol 7 (11) ◽  
pp. 912
Author(s):  
Rodolfo Bizarria ◽  
Pepijn W. Kooij ◽  
Andre Rodrigues

Maintaining symbiosis homeostasis is essential for mutualistic partners. Leaf-cutting ants evolved a long-term symbiotic mutualism with fungal cultivars for nourishment while using vertical asexual transmission across generations. Despite the ants’ efforts to suppress fungal sexual reproduction, scattered occurrences of cultivar basidiomes have been reported. Here, we review the literature for basidiome occurrences and associated climate data. We hypothesized that more basidiome events could be expected in scenarios with an increase in temperature and precipitation. Our field observations and climate data analyses indeed suggest that Acromyrmex coronatus colonies are prone to basidiome occurrences in warmer and wetter seasons. Even though our study partly depended on historical records, occurrences have increased, correlating with climate change. A nest architecture with low (or even the lack of) insulation might be the cause of this phenomenon. The nature of basidiome occurrences in the A. coronatus–fungus mutualism can be useful to elucidate how resilient mutualistic symbioses are in light of climate change scenarios.


Author(s):  
Y. K. Xiao ◽  
Z. M. Ji ◽  
C. S. Fu ◽  
W. T. Du ◽  
J. H. Yang ◽  
...  

Abstract. We projected incident surface solar radiation (SSR) over China in the middle (2040–2059) and end (2080–2099) of the 21st century in the Representative Concentration Pathway (RCP) 8.5 scenario using a multi-model ensemble derived from the weighted average of seven global climate models (GCMs). The multi-model ensemble captured the contemporary (1979–2005) spatial and temporal characteristics of SSR and reproduced the long-term temporal evolution of the mean annual SSR in China. However, it tended to overestimate values compared to observations due to the absence of aerosol effects in the simulations. The future changes in SSR showed increases over eastern and southern China, and decreases over the Tibetan Plateau (TP) and northwest China relative to the present day. At the end of the 21st century, there were SSR increases of 9–21 W m−2 over northwest, central, and south China, and decreases of 18–30 W m−2 over the TP in June–July–August (JJA). In northeast China, SSR showed seasonal variation with increases in JJA and decreases in December–January–February. The time series of annual SSR had a decreased linear trend for the TP, and a slightly increased trend for China during 2006–2099. The results of our study suggest that solar energy resources will likely decrease in the TP under future climate change scenarios.


2021 ◽  
Author(s):  
Nima Shokri ◽  
Amirhossein Hassani ◽  
Adisa Azapagic

<p>Population growth and climate change is projected to increase the pressure on land and water resources, especially in arid and semi-arid regions. This pressure is expected to affect all driving mechanisms of soil salinization comprising alteration in soil hydrological balance, sea salt intrusion, wet/dry deposition of wind-born saline aerosols — leading to an increase in soil salinity. Soil salinity influences soil stability, bio-diversity, ecosystem functioning and soil water evaporation (1). It can be a long-term threat to agricultural activities and food security. To devise sustainable action plan investments and policy interventions, it is crucial to know when and where salt-affected soils occur. However, current estimates on spatio-temporal variability of salt-affected soils are majorly localized and future projections in response to climate change are rare. Using Machine Learning (ML) algorithms, we related the available measured soil salinity values (represented by electrical conductivity of the saturated paste soil extract, EC<sub>e</sub>) to some environmental information (or predictors including outputs of Global Circulation Models, soil, crop, topographic, climatic, vegetative, and landscape properties of the sampling locations) to develop a set of data-driven predictive tools to enable the spatio-temporal predictions of soil salinity. The outputs of these tools helped us to estimate the extent and severity of the soil salinity under current and future climatic patterns at different geographical levels and identify the salinization hotspots by the end of the 21<sup>st</sup> century in response to climate change. Our analysis suggests that a soil area of 11.73 Mkm<sup>2</sup> located in non-frigid zones has been salt-affected in at least three-fourths of the 1980 - 2018 period (2). At the country level, Brazil, Peru, Sudan, Colombia, and Namibia were estimated to have the highest rates of annual increase in the total area of soils with an EC<sub>e</sub> ≥ 4 dS m<sup>-1</sup>. Additionally, the results indicate that by the end of the 21<sup>st</sup> century, drylands of South America, southern and Western Australia, Mexico, southwest United States, and South Africa will be the salinization hotspots (compared to the 1961 - 1990 period). The results of this study could inform decision-making and contribute to attaining the United Nation’s Sustainable Development Goals for land and water resources management.</p><p>1. Shokri-Kuehni, S.M.S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resour. Res., 56, e2019WR026707. https://doi.org/ 10.1029/2019WR026707</p><p>2. Hassani, A., Azapagic, A., Shokri, N. (2020). Predicting Long-term Dynamics of Soil Salinity and Sodicity on a Global Scale, Proc. Nat. Acad. Sci., 117, 52, 33017–33027. https://doi.org/10.1073/pnas.2013771117</p>


Sign in / Sign up

Export Citation Format

Share Document