scholarly journals Correlation between structure and magnetic properties of “finemet” type microwires

2019 ◽  
Vol 27 (2) ◽  
pp. 65-68
Author(s):  
N. A. Kutseva ◽  
V. F. Bashev ◽  
S. I. Ryabtsev ◽  
O. S. Krapivina-Soloviova

Effect of geometrical parameters (metallic core diameter, glass cover thickness) on the structure and magnetic properties of glass-coated Fe-Si-B-Nb-Cu microwires is investigated. The structure of as-prepared Fe73.8Cu1Nb3.1Si13B9.1 microwire is nanocrystalline, consisting of α-Fe(Si) crystallites in a residual amorphous matrix. It is shown that great residual stresses arising at the manufacturing processes greatly influence the microstresses and crystallite sizes of α-Fe(Si) crystals. An increasing of stress magnitude results to structure refinement. The size of α-Fe(Si) crystals and crystallized volume fraction decrease from approximately 105 nm and 71 % to 9 nm and 34 %, respectively, with glass cover thickness increasing. Grain size refinement of α-Fe(Si) leads to the considerable decrease of coercivity of microwires from 1800 A/m to 160 A/m.

2017 ◽  
Vol 727 ◽  
pp. 403-409
Author(s):  
Yi Hao Shen ◽  
Qing Rong Yao ◽  
Peng Cheng Yang ◽  
Jian Qiu Deng ◽  
Zong Min Wang

Effect of Na doping on the structural and magnetic properties of La1-xNaxCoO3 (0≤x≤0.4) nanopowder samples synthesized by sol-gel method have been investigated. Rietveld crystal structure refinement of the X-ray diffraction data shows that La1−xNaxCoO3 (x≤0.3) crystallizes in the rhombohedral structure with space group . The lattice parameters decrease and the crystallite sizes increase with the increase of x. For the sample with x=0.4, a secondary hexagonal phase NaCo2O4 was observed. The zero field cooling (ZFC) and field cooling (FC) curve of the samples (x≤0.3) exhibit a paramagnetic-ferromagnetic transition with decreasing temperature.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1515 ◽  
Author(s):  
Katarzyna Pawlik ◽  
Piotr Pawlik ◽  
Jerzy J. Wysłocki ◽  
Waldemar Kaszuwara

In the present study, the phase constitution, microstructure and magnetic properties of the nanocrystalline magnets, derived from fully amorphous or partially crystalline samples by annealing, were analyzed and compared. The melt-spun ribbons (with a thickness of ~30 µm) and suction-cast 0.5 mm and 1 mm thick plates of the Pr9Fe50Co13Zr1Nb4B23 alloy were soft magnetic in the as-cast state. In order to modify their magnetic properties, the annealing process was carried out at various temperatures from 923K to 1033K for 5 min. The Rietveld refinement of X-ray diffraction patterns combined with the partial or no known crystal structures (PONKCS) method allowed one to quantify the component phases and calculate their crystalline grain sizes. It was shown that the volume fraction of constituent phases and their crystallite sizes for the samples annealed at a particular temperature, dependent on the rapid solidification conditions, and thus a presence or absence of the crystallization nuclei in the as-cast state. Additionally, a thermomagnetic analysis was used as a complementary method to confirm the phase constitution. The hysteresis loops have shown that most of the samples exhibit a remanence enhancement typical for the soft/hard magnetic nanocomposite. Moreover, for the plates annealed at the lowest temperatures, the highest coercivities up to ~1150 kA/m were measured.


2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


2021 ◽  
pp. 152808372110013
Author(s):  
Vivek R Jayan ◽  
Lekhani Tripathi ◽  
Promoda Kumar Behera ◽  
Michal Petru ◽  
BK Behera

The internal geometry of composite material is one of the most important factors that influence its performance and service life. A new approach is proposed for the prediction of internal geometry and tensile behavior of the 3 D (three dimensional) woven fabrics by creating the unit cell using mathematical coding. In many technical applications, textile materials are subjected to rates of loading or straining that may be much greater in magnitude than the regular household applications of these materials. The main aim of this study is to provide a generalized method for all the structures. By mathematical coding, unit cells of 3 D woven orthogonal, warp interlock and angle interlock structures have been created. The study then focuses on developing code to analyze the geometrical parameters of the fabric like fabric thickness, areal density, and fiber volume fraction. Then, the tensile behavior of the coded 3 D structures is studied in Ansys platform and the results are compared with experimental values for authentication of geometrical parameters as well as for tensile behavior. The results show that the mathematical coding approach is a more efficient modeling technique with an acceptable error percentage.


Nukleonika ◽  
2015 ◽  
Vol 60 (1) ◽  
pp. 29-33
Author(s):  
Mariusz Hasiak

Abstract The microstructure and magnetic properties of nanocomposite hard magnetic Nd-Fe-B-(Re, Ti) materials with different Nd and Fe contents are studied. The role of Re and Ti addition in phase composition and volume fraction of the Nd-Fe-B phase is determined. All samples are annealed at the same temperature of 993 K for 10 min. Mössbauer spectroscopy shows that the addition of 4 at.% of Re to the Nd8Fe78B14 alloy leads to creation of an ineligible amount of the magnetically hard Nd2Fe14B phase. Moreover, the microstructure and magnetic characteristics recorded in a wide range of temperatures for the Nd8Fe79−xB13Mx (x = 4; M = Re or Ti) alloys are also analyzed.


1990 ◽  
Vol 195 ◽  
Author(s):  
T.E. Schlesinger ◽  
A. Gavrin ◽  
R.C. Cammarata ◽  
C.-L. Chien

ABSTRACTThe mechanical properties of sputtered Ni-Al2O3 granular thin films were investigated by low load microharaness testing. It was found that the microhardness of these films displayed a percolation threshold at a nickel volume fraction of about 0.6, below which the hardness is greatly enhanced. This behavior is qualitatively similar to the electrical and magnetic properties of these types of films. A percolation threshold in hardness can be understood as due to a change in the mechanism for plastic deformation.


2002 ◽  
Vol 17 (6) ◽  
pp. 1412-1418 ◽  
Author(s):  
I. Shao ◽  
P. M. Vereecken ◽  
C. L. Chien ◽  
P. C. Searson ◽  
R. C. Cammarata

Nanocomposite Ni/Al2O3 films were electrodeposited from a suspension of Al2O3 nanoparticles in aqueous nickel sulfamate solution. The volume fraction of particles incorporated increased with electrode rotation rate and decreased with deposition current density. The composition, microstructure, hardness, and magnetic properties of these nanocomposite films were characterized. The mechanical strengthening due to particle dispersion in the films was interpreted by considering an Orowan dislocation bowing mechanism. The coercivity of the films increased with increasing particle concentration in the film. The saturation magnetization showed a weak dependence on particle concentration.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Chen Guobin ◽  
Yang Hui ◽  
Zhang Xiaoming ◽  
Liu Jun ◽  
Tang Jun

We mainly focused on the magnetocapacitance effect of Fe3O4-PDMS nanocomposites. We also proposed the preparation method and measured microstructures, magnetic properties, and magnetocapacitance value of the nanocomposites. The magnetocapacitance measurement results show that the nanocomposites have magnetocapacitance property, the magnetocapacitance with magnetic field depends on the magnetic property, and the value at the same magnetic field is increasing with the volume fraction of Fe3O4nanoparticles. The magnetocapacitance model is proposed to explain this phenomenon by analyzing the magnetic interaction between particles and the viscoelasticity of PDMS. We also calculated the theoretical capacitance value of all samples using the magnetization of nanoparticles and mechanical parameters of PDMS. From the theoretical values, it is concluded that the model we proposed can well explain the magnetocapacitance effect of Fe3O4-PDMS nanocomposites.


2021 ◽  
Vol 3 (1) ◽  
pp. 13-18
Author(s):  
Ratna Dewi Syarifah ◽  
Nabil Nabhan MH ◽  
Zein Hanifah ◽  
Iklimatul Karomah ◽  
Ahmad Muzaki Mabruri

Analysis of fuel volume fraction with uranium caride fuel in Gas Cooled Fast Reactor (GFR) with SRAC Code is has been done. The calculation used SRAC Code (Standard Reactor Analysis Code) which is developed by JAEA (Japan Atomic Energy Agency), and the data libraries nuclear used JENDL 4.0. There are two calculation has been used, fuel pin cell calculation (PIJ Calculation) and core calculation (CITATION Calculation). In core calculation, the leakage is calculated so the calculation more precise. The CITATION calculation use two type of core configuration, i.e. homogeneous core configuration and heterogeneous core configuration. The power density value of two type core configuration is quite difference. It is better use heterogeneous core configuration than homogeneous core configuration, because the power density of heterogeneous core configuration is flatter than the other. From the analysis of fuel volume fraction, when the volume fraction is increase, the k-eff value is increase. And the optimum design after has been analysis for fuel volume fraction, that is the fuel volume fraction is 49% with a heterogeneous core configuration of three types of fuel percentages, for Fuel1 9%, Fuel2 12% and Fuel3 15%. This reactor is cylindrical, has a core diameter of 240 cm and a core height of 100 cm.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 664 ◽  
Author(s):  
Ammar Alsabery ◽  
Muneer Ismael ◽  
Ali Chamkha ◽  
Ishak Hashim

This numerical study considers the mixed convection and the inherent entropy generated in Al 2 O 3 –water nanofluid filling a cavity containing a rotating conductive cylinder. The vertical walls of the cavity are wavy and are cooled isothermally. The horizontal walls are thermally insulated, except for a heat source segment located at the bottom wall. The dimensionless governing equations subject to the selected boundary conditions are solved numerically using the Galerkin finite-element method. The study is accomplished by inspecting different ranges of the physical and geometrical parameters, namely, the Rayleigh number ( 10 3 ≤ R a ≤ 10 6 ), angular rotational velocity ( 0 ≤ Ω ≤ 750 ), number of undulations ( 0 ≤ N ≤ 4 ), volume fraction of Al 2 O 3 nanoparticles ( 0 ≤ ϕ ≤ 0.04 ), and the length of the heat source ( 0.2 ≤ H ≤ 0.8 ) . The results show that the rotation of the cylinder boosts the rate of heat exchange when the Rayleigh number is less than 5 × 10 5 . The number of undulations affects the average Nusselt number for a still cylinder. The rate of heat exchange increases with the volume fraction of the Al 2 O 3 nanoparticles and the length of the heater segment.


Sign in / Sign up

Export Citation Format

Share Document