scholarly journals Tribological and Corrosion Properties of Iron-Based Alloys

Author(s):  
E. Vernickaite ◽  
Z. Z. Antar ◽  
A. Nicolenco ◽  
R. Kreivaitis ◽  
N. Tsyntsaru ◽  
...  

Corrosion is responsible for industrial maintenance and industrial accidents costs. A helpful way to prevent corrosion is to develop advanced materials with highly anti-corrosive properties. The electrodeposition is one of the most attractive methods for obtaining these materials. This work deals with evaluation of the tribological and corrosion behaviour of electrodeposited Fe-W and Fe-W-P alloys. Electrodeposits were obtained from 4 different baths and were characterized by means of scanning electron microscopy; X-ray dispersive energy spectroscopy; X-ray diffraction spectroscopy. The hardness was determined by Micro-indentation carried out at normal forces varying from 98 mN up to 980 mN with a loading rate of 1961 mN/min. A ball-disc tribometer was used to study the tribological properties at 90 °C. A diamond indenter, having a radius of 100 µm, was used to carry the scratch test. Corrosion behaviour was studied using polarization and electrochemical impedance spectroscopy technique. It was investigated that in all cases Fe-W and Fe-W-P alloy coatings exhibit greater micro-hardness than the stainless steel substrate. The amorphous-like ternary Fe-W-P alloy coatings demonstrate higher wear and corrosion resistance and lower friction coefficient compared to binary Fe-W alloy coating.

2018 ◽  
Vol 18 ◽  
pp. 19-26
Author(s):  
Nadjette Belhamra ◽  
Abd Raouf Boulebtina ◽  
Khadidja Belassadi ◽  
Abdelouahed Chala ◽  
Malika Diafi

The purpose of this paper was to investigate the effect of Al2O3 and TiO2 nanoparticles contents on structural proporties, microhardness and corrosion resistance of Zn-Ni alloy coationg. Zn-Ni, Zn-Ni-Al2O3 and Zn-Ni-TiO2 composite coatings were electrodeposited on steel substrate by direct current in sulphate bath.The structure of the coatings was studied by X-ray diffration and by scaning electron miroscopy. The results showed the appearance of Ni5Zn21 phases and that the incrorporation of Al2O3 and TiO2 in the Zn-Ni coating refined the crystal grain size.The corrosion performance of coating in the 0.6M NaCl as a corrisive solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy EIS methods. It was found that the incorporation of nanoparticules in Zn-Ni alloy coating have better corrosion resistance and the values of Rct and Zw increase, while the values of Cdl decrease with increasing of nanoparticules.


Author(s):  
Srikant Tiwari ◽  
Suryanarayan B Mishra

Artificial material such as stainless steel (SS) is widely used for orthopaedic applications owing to its superior properties, ease of fabrication and lower cost. However, in the body environment, stainless steel can leach toxic elements such as nickel and chromium. To prevent this, a hydroxyapatite (HAp) coating having chemical characteristics very similar to the human bone was deposited on a medical-grade UNS S31254 austenitic stainless steel by a Low-velocity oxy-fuel spray gun (LVOF). The coating was characterised by using a field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and Fourier transform infrared spectroscope (FTIR). The adhesion strength, microhardness and corrosion behaviour were studied using the Tensometre, Vickers microhardness tester and potentiodynamic polarisation with electrochemical impedance spectroscope. The bacterial adhesion and bioactivity of the coating were also evaluated. The LVOF sprayed HAp coating has shown better corrosion resistance, higher bioactivity and higher hardness than the uncoated steel. The presence of tricalcium phosphate, octa-calcium phosphate (OCP) and tetra-calcium phosphate (TTCP) was found in the coating. LVOF sprayed HAp coating is also found suitable in lowering the bacterial adhesion on the steel substrate.


CORROSION ◽  
10.5006/3767 ◽  
2022 ◽  
Author(s):  
Malvika Karri ◽  
Amit Verma ◽  
J.B. Singh ◽  
Sunil Kumar Bonagani ◽  
U.K. Goutam

This work seeks to understand the underlying mechanism involved in passivity of Ni-Cr-Mo alloys in a less concentrated HCl solution (1M) by systematically varying contents of Cr and Mo solutes in model Ni-Cr-Mo alloys. Corrosion behaviour was evaluated based on potentiodynamic polarisation tests carried out in conjunction with electrochemical impedance and x-ray photoelectron spectroscopies of passive films that formed on alloys during their exposure to the HCl solution. Results have shown that an increase in Mo alone is not sufficient to improve the corrosion resistance of the alloys at lower concentrations of HCl. Optimum concentrations of Cr and Mo solutes have been found to be in the vicinity of ~17 wt.% Cr and ~19 wt.% Mo for superior corrosion resistance of the alloys. This was attributed to the protection of the Cr2O3 layer as a consequence of the enrichment of Mo6+ ions in the passive film in 1M HCl solution.


2019 ◽  
Vol 31 (4) ◽  
pp. 891-895
Author(s):  
Dinesh Kumar Chelike ◽  
K. Juliet Gnana Sundari

Considering the good corrosion resistance of Zn-Ni alloy, it is selected in the present study to be the protective coating on mild steel and it is considered as a strong candidate for the replacement of environmentally hazardous cadmium. Zn-Ni alloy coating is applied by electrodeposition at optimum temperature, current density and time. The bath solution used is consisting of EDTA as complexing agent. The electrodeposition is also carried out with tartaric acid and benzaldehyde additives to have good corrosion resistance and brightness. The electrodeposits obtained with and without additives are examined for nature and alloy composition. The corrosion behaviour of the electrodeposits is studied by Tafel polarization and electrochemical impedance spectroscopy.


2020 ◽  
Vol 835 ◽  
pp. 288-296 ◽  
Author(s):  
Adel Attia ◽  
Lobna A. Khorshed ◽  
Lamiaa Z. Mohamed ◽  
Mohammed A. Gepreel

Ti-Mn alloy has a high specific strength, excellent cold workability and good biocompatibility. A cold rolled Ti-7 wt.% Mn was compared to annealed sample at 900°C for 10 min and the corrosion resistance property was tested in artificial saliva solution (AS). The Ti-7 wt.% Mn alloys (cold rolled and annealed) were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX) and compared to pure Ti. Simultaneously, the alloys tested in the AS solution for up to 28 days mainly by following the open-circuit potential (OCP), electrochemical impedance spectroscopy (EIS), SEM and EDX. Annealed Ti-7wt.% Mn showed good corrosion properties similar to that of pure Ti, hence the new Ti-7wt.%Mn alloy have higher specific strength than pure Ti, yet showed same corrosion properties which favor implanted dental applications.


2018 ◽  
Vol 9 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Ramesh Bhat ◽  
Ampar Chitharanjan Hegde

Chloride bath containing ZnCl2 ∙7H2O, FeCl2 ∙H2O and a combination of sulphamic acid and citric acid (SA+CA) were optimized for electrodeposition of bright Zn-Fe alloy coating on the mild steel. Bath constituents and operating parameters were optimized by the Hull cell method for highest performance of the coating against corrosion. The effect of current density and temperature on deposit characteristics such as corrosion resistance, hardness, thickness, cathode current efficiency and glossiness, were studied. Potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) methods were used to assess corrosion behaviour. Surface morphology of coatings was examined using scanning electron microscopy (SEM). The Zn-Fe alloy with intense peaks corresponding to Zn (100) and Zn (101) phases, evidenced by X-ray diffraction (XRD) study, showed the highest corrosion resistance. A new and economical chloride bath for electrodeposition of bright Zn-Fe alloy coating on mild steel was proposed and discussed.


2018 ◽  
Vol 65 (6) ◽  
pp. 558-571 ◽  
Author(s):  
Ayşe Nur Acar ◽  
Rasiha Nefise Mutlu ◽  
Abdul Kadir Ekşi ◽  
Ahmet Ekicibil ◽  
Birgül Yazıcı

Purpose The purpose of this paper is to examine new alloys created from Alumix 431 powder and investigate their mechanical and electrochemical properties. Design/methodology/approach In this study; Alumix-431 alloy samples were prepared using the powder metallurgy (P/M) method applying cold (RT) and warm (50°C and 80°C) compaction methods under pressures of 200 and 250 MPa and were sintered at 600°C in N2(g) atmosphere. Hardness and density of the samples were measured, and corrosion properties were determined by electrochemical impedance spectroscopy charting polarization curves. Surface characterization was determined by contact angle, scanning electron microscopy/mapping, energy dispersive X-ray spectrometry and X-ray diffractometry images. Findings Alumix-431 alloys obtained upon compaction at 250 MPa/50 °C had the highest mechanical properties and corrosion resistance and good surface properties. On the surfaces of Alumix-431 alloys, α-Al, MgZn2, Al2,CuMg, Al2,O3, Al2MgO4 phases were recorded. Originality/value This study aimed to construct a correlation between mechanical and electrochemical properties of the newly created alloys (prepared under special conditions).


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 634
Author(s):  
Mohammad Reza Jandaghi ◽  
Abdollah Saboori ◽  
Gholamreza Khalaj ◽  
Mohammadreza Khanzadeh Ghareh Shiran

In this study, the microstructural evolutions and corrosion resistance of aluminium/copper joint fabricated through explosive welding process have been thoroughly investigated, while stand-off distance was variable. Microstructural analyses demonstrate that, regardless of grain refinement in the welding boundary, increasing the stand-off space is followed by a higher thickness of the localized melting pool. X-Ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS) analyses recognized the binary intermetallic layers as a combination of Al2Cu and AlCu. Polarization and electrochemical impedance spectroscopy (EIS) corrosion tests revealed that a higher stand-off distance resulted in the increment of corrosion potential, current rate, and concentration gradient at the interface owing to the remarkable kinetic energy of the collision, which impaired corrosion resistance.


Author(s):  
Abeens M ◽  
R Murugananthan

Abstract As AA 7075 T651 comprehensively is used in the marine naval vessels, the factor of corrosion performance always plays a significant role. In this work, an investigation is carried out to study the effect of corrosion behaviour of shot peened AA 7075 T651 in 3.5% solution. From the potentiodynamic polarization study, a 27.72% decrease is ascertained in the Icorr in shot peened specimen in correlation to unpeened aluminium alloy. A drop in Icorr from 1.883 to 1.480 mA/cm2 in shot peened specimen, indicates enhanced pitting corrosion resistance. An electrochemical impedance spectroscopy reveals a surge in the oxide layer formation on the peened surface aiding the drop in corrosion rate. Resistance to pit formations and improvement in oxygen deposition in the peened specimen is observed availing a Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray analysis (EDX). The micro structures of the peened and unpeened specimen are captured using optical microscopy and Transmission electron microscopy (TEM). Micro-strain, dislocation density is also calculated from the X- ray diffraction analysis (XRD), in which grain size reduces by 28.07%, dislocation density surges by 38.65% and micro strain increases by 21.95% in peened specimen in correlation to unpeened AA 7075 T651, resulting in a surge in corrosion resistance by 27.92% in the peened specimen in correlation to unpeened aluminium alloy.


2018 ◽  
Vol 65 (5) ◽  
pp. 437-443
Author(s):  
Miao Li ◽  
Bi Qing Chen ◽  
Min He ◽  
Tongtong Xiong ◽  
Lixia Gao

Purpose This paper aims to obtain rare earth magnesium alloy with good adhesion and corrosion resistance. Design/methodology/approach In 353 K oil bath, cyclic voltammetry was used to study the electrochemical behavior of Pr(III), Mg(II) and Ni(II) in choline chloride-urea ionic liquid. The constant potential method was adopted for electrodeposition of Pr-Mg-Ni ternary alloy films. The content of Pr in the Pr-Mg-Ni alloy films changes with respect to the deposition potential, deposition time and concentration ratio of Pr3+:Mg2+:Ni2+. Response surface methodology was applied to optimize the conditions for obtaining high-quality deposition films. Findings The results showed that the reaction of Ni(II) to Ni is irreversible; this result can be verified by Tafel polarization curve and chronocoulometry curve. Its transfer coefficient on the platinum electrode of 0.32 and diffusion coefficient is 1.0510−6 cm2.s−1. Mg(II) and Pr(III) cannot solely be reduced to their elemental form, but they can be induced via codeposition by Ni(II). The result shows that under a voltage of −1.00 V, the alloy coating with even structure is obtained when the concentration ratio of Pr3+:Mg2+:Ni2+ is 1:1:1 and the deposition time is 20 min. Scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and other analyses revealed that the alloy coating is amorphous. Polarization curves of the cathode are tested, which manifest the lowest corrosion current density, stating which has good corrosion performance in alkaline solution and NaCl solution; this can be attributed to its dense film structure and good combination with the substrate. Originality/value It provides some technology for the production of corrosion-resistant materials.


Sign in / Sign up

Export Citation Format

Share Document