scholarly journals Recent developments and knowledge in pseudocereals including technological aspects

2021 ◽  
Author(s):  
D. Bender ◽  
R. Schönlechner

AbstractAmaranth, buckwheat, quinoa, and less known, canihua are the most important pseudocereals. Their high nutritional value is well recognized and they are increasingly used for the development of a wide range of starch-based foods, which has been fostered by intensified research data performed in recent years. In addition to health driven motivations, also environmental aspects like the ongoing climate change are an important stimulus to increase agricultural biodiversity again. As pseudocereals are botanically classified as dicotyledonous plants their chemical, physical and processing properties differ significantly from the monocotyledonous cereals. Most important factors that need to be addressed for processing is their smaller seed kernel size, their specific starch structure and granule architecture, their gluten-free protein, but also their dietary fibre and secondary plant metabolites composition. This review gives a condensed overview of the recent developments and gained knowledge with special attention to the technological and food processing aspects of these pseudocereals.

1999 ◽  
Vol 58 (2) ◽  
pp. 415-419 ◽  
Author(s):  
Ian Rowland

There is currently intense research interest in secondary plant metabolites because of their potential preventative effects on the chronic diseases of Western societies, especially cardiovascular disease and cancer. To date most of the research has focused on the identification of plant-derived substances and their potential protective effects against specific chronic diseases. The important issue of determining the optimal intake of those substances, such that the beneficial effects are maximized without manifestation of adverse effects, has yet to be addressed in most cases. Furthermore, there are no specific functional markers that can be used to assess optimal intake, although it may be possible to use biomarkers such as serum cholesterol if the rest of the diet is strictly controlled. The present review discusses a wide range of substances associated with plants, including dietary fibre, resistant starch, oligosaccharides, phyto-oestrogens, phytosterols, flavonoids, terpenes and isothiocyanates, and attempts where possible to indicate optimal intakes and to suggest functional markers.


Author(s):  
Ahmed Al-Jumaili ◽  
Avishek Kumar ◽  
Kateryna Bazaka ◽  
Mohan V. Jacob

The persistent issue of bacterial and fungal colonization of artificial implantable materials and decreasing efficacy of conventional systemic antibiotics used to treat implant-associated infections has led to the development of a wide range of antifouling and antibacterial strategies. This article reviews one such strategy where inherently biologically active renewable resources, i.e. secondary plant metabolites (SPMs) and their naturally occurring combinations (i.e. essential oils) are used for surface functionalization and synthesis of polymer thin films. With a distinct mode of antibacterial activity, broad spectrum of action and diversity of available chemistries, secondary plant metabolites present an attractive alternative to conventional antibiotics. However, their conversion from liquid to solid phase without significant loss of activity is not trivial. Using select examples, this article shows how plasma techniques provide a sufficiently flexible and chemically reactive environment to enable the synthesis of biologically-active polymer-coatings from volatile renewable resources.


Analytica ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 93-120
Author(s):  
Sofia Karanikolopoulou ◽  
Panagiota-Kyriaki Revelou ◽  
Marinos Xagoraris ◽  
Maroula G. Kokotou ◽  
Violetta Constantinou-Kokotou

Cruciferous vegetables are characterized by the presence of sulfur-containing secondary plant metabolites known as glucosinolates (GLS). The consumption of cruciferous vegetables such as broccoli, cabbage, rocket salad, and cauliflower has been related to the prevention of non-communicable diseases. Their beneficial effects are attributed to the enzymatic degradation products of GLS, e.g., isothiocyanates and indoles. Owing to these properties, there has been a shift in the last few years towards the research of these compounds and a wide range of methods for their extraction and analytical determination have been developed. The aim of this review is to present the sample preparation and extraction procedures of isothiocyanates and indoles from cruciferous vegetables and the analytical methods for their determination. The majority of the references that have been reviewed are from the last decade. Although efforts towards the application of eco-friendly non-conventional extraction methods have been made, the use of conventional solvent extraction is mainly applied. The major analytical techniques employed for the qualitative and quantitative analysis of isothiocyanates and indoles are high-performance liquid chromatography and gas chromatography coupled with or without mass spectrometry detection. Nevertheless, the analytical determination of isothiocyanates presents several problems due to their instability and the absence of chromophores, making the simultaneous determination of isothiocyanates and indoles a challenging task.


Planta ◽  
2021 ◽  
Vol 253 (2) ◽  
Author(s):  
Mehran Rahimi ◽  
Harro Bouwmeester

Abstract Main conclusion The sunflower sesquiterpene lactones 8-epixanthatin and tomentosin can bind to the hydrophobic pocket of sunflower KAI2 with an affinity much higher than for the exogenous ligand KAR. Abstract Sesquiterpene lactones (STLs) are secondary plant metabolites with a wide range of biological, such as anti-microbial, activities. Intriguingly, the STLs have also been implicated in plant development: in several Asteraceae, STL levels correlate with the photo-inhibition of hypocotyl elongation. Although this effect was suggested to be due to auxin transport inhibition, there is no structural–functional evidence for this claim. Intriguingly, the light-induced inhibition of hypocotyl elongation in Arabidopsis has been ascribed to HYPOSENSITIVE TO LIGHT/KARRIKIN-INSENSITIVE2 (HTL/KAI2) signaling. KAI2 was discovered because of its affinity to the smoke-derived karrikin (KAR), though it is generally assumed that KAI2 has another, endogenous but so far elusive, ligand rather than the exogenous KARs. Here, we postulate that the effect of STLs on hypocotyl elongation is mediated through KAI2 signaling. To support this hypothesis, we have generated homology models of the sunflower KAI2s (HaKAI2s) and used them for molecular docking studies with STLs. Our results show that particularly two sunflower STLs, 8-epixanthatin and tomentosin, can bind to the hydrophobic pockets of HaKAI2s with high affinity. Our results are in line with a recent study, showing that these two STLs accumulate in the light-exposed hypocotyls of sunflower. This finding sheds light on the effect of STLs in hypocotyl elongation that has been reported for many decades but without conclusive insight in the elusive mechanism underlying this effect.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrea Zubrova ◽  
Klara Michalikova ◽  
Jaroslav Semerad ◽  
Michal Strejcek ◽  
Tomas Cajthaml ◽  
...  

The involvement of bacterial aromatic ring-hydroxylating dioxygenases (ARHDs) in the degradation of aromatic pollutants, such as polychlorinated biphenyls (PCBs), has been well studied. However, there is considerable speculation as to the origin of this ability. One hypothesis is centered on a connection between the ability to degrade aromatic pollutants and the necessity of soil bacteria to cope with and/or utilize secondary plant metabolites (SPMs). To investigate this connection, we researched the involvement of biphenyl 2,3-dioxygenase (BPDO), an ARHD essential for the degradation of PCBs, in the metabolism of SPMs in the soil bacterium Pseudomonas alcaliphila JAB1, a versatile degrader of PCBs. We demonstrated the ability of the strain JAB1 to transform a variety of SPMs, namely the flavonoids apigenin, flavone, flavanone, naringenin, fisetin, quercetin, morin, and catechin, caffeic acid, trans-cinnamic acid, and the monoterpenes (S)-limonene and (R)-carvone. Of those, the transformation of flavone, flavanone, and (S)-limonene was conditioned by the activity of JAB1-borne BPDO and thus was researched in more detail, and we found evidence for the limonene monooxygenase activity of the BPDO. Furthermore, the bphA gene in the strain JAB1 was demonstrated to be induced by a wide range of SPMs, with monoterpenes being the strongest inducers of the SPMs tested. Thus, our findings contribute to the growing body of evidence that ARHDs not only play a role in the catabolism of aromatic pollutants, but also of natural plant-derived aromatics, and this study supports the hypothesis that ARHDs participate in ecological processes mediated by SPMs.


The recycling and reuse of materials and objects were extensive in the past, but have rarely been embedded into models of the economy; even more rarely has any attempt been made to assess the scale of these practices. Recent developments, including the use of large datasets, computational modelling, and high-resolution analytical chemistry, are increasingly offering the means to reconstruct recycling and reuse, and even to approach the thorny matter of quantification. Growing scholarly interest in the topic has also led to an increasing recognition of these practices from those employing more traditional methodological approaches, which are sometimes coupled with innovative archaeological theory. Thanks to these efforts, it has been possible for the first time in this volume to draw together archaeological case studies on the recycling and reuse of a wide range of materials, from papyri and textiles, to amphorae, metals and glass, building materials and statuary. Recycling and reuse occur at a range of site types, and often in contexts which cross-cut material categories, or move from one object category to another. The volume focuses principally on the Roman Imperial and late antique world, over a broad geographical span ranging from Britain to North Africa and the East Mediterranean. Last, but not least, the volume is unique in focusing upon these activities as a part of the status quo, and not just as a response to crisis.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


Author(s):  
Hernâni Marques ◽  
Pedro Cruz-Vicente ◽  
Tiago Rosado ◽  
Mário Barroso ◽  
Luís A. Passarinha ◽  
...  

Environmental tobacco smoke exposure (ETS) and smoking have been described as the most prevalent factors in the development of certain diseases worldwide. According to the World Health Organization, more than 8 million people die every year due to exposure to tobacco, around 7 million due to direct ETS and the remaining due to exposure to second-hand smoke. Both active and second-hand exposure can be measured and controlled using specific biomarkers of tobacco and its derivatives, allowing the development of more efficient public health policies. Exposure to these compounds can be measured using different methods (involving for instance liquid- or gas-chromatographic procedures) in a wide range of biological specimens to estimate the type and degree of tobacco exposure. In recent years, a lot of research has been carried out using different extraction methods and different analytical equipment; this way, liquid–liquid extraction, solid-phase extraction or even miniaturized procedures have been used, followed by chromatographic analysis coupled mainly to mass spectrometric detection. Through this type of methodologies, second-hand smokers can be distinguished from active smokers, and this is also valid for e-cigarettes and vapers, among others, using their specific biomarkers. This review will focus on recent developments in the determination of tobacco smoke biomarkers, including nicotine and other tobacco alkaloids, specific nitrosamines, polycyclic aromatic hydrocarbons, etc. The methods for their detection will be discussed in detail, as well as the potential use of threshold values to distinguish between types of exposure.


1990 ◽  
Vol 43 (5) ◽  
pp. 583
Author(s):  
GL Price

Recent developments in the growth of semiconductor thin films are reviewed. The emphasis is on growth by molecular beam epitaxy (MBE). Results obtained by reflection high energy electron diffraction (RHEED) are employed to describe the different kinds of growth processes and the types of materials which can be constructed. MBE is routinely capable of heterostructure growth to atomic precision with a wide range of materials including III-V, IV, II-VI semiconductors, metals, ceramics such as high Tc materials and organics. As the growth proceeds in ultra high vacuum, MBE can take advantage of surface science techniques such as Auger, RHEED and SIMS. RHEED is the essential in-situ probe since the final crystal quality is strongly dependent on the surface reconstruction during growth. RHEED can also be used to calibrate the growth rate, monitor growth kinetics, and distinguish between various growth modes. A major new area is lattice mismatched growth where attempts are being made to construct heterostructures between materials of different lattice constants such as GaAs on Si. Also described are the new techniques of migration enhanced epitaxy and tilted superlattice growth. Finally some comments are given On the means of preparing large area, thin samples for analysis by other techniques from MBE grown films using capping, etching and liftoff.


Author(s):  
Charles Oluwaseun Adetunji ◽  
Santwana Palai ◽  
Chika Precious Ekwuabu ◽  
Chukwuebuka Egbuna ◽  
Juliana Bunmi Adetunji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document