Evaluation of the N-fertilization of winter wheat based on the NMIN-method in farm practice

2006 ◽  
Vol 34 (1) ◽  
pp. 589-592 ◽  
Author(s):  
Tamás Németh ◽  
Ottó Pálmai ◽  
József Horváth
Keyword(s):  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7738
Author(s):  
Zhaoan Sun ◽  
Shuxia Wu ◽  
Biao Zhu ◽  
Yiwen Zhang ◽  
Roland Bol ◽  
...  

Information on the homogeneity and distribution of 13carbon (13C) and nitrogen (15N) labeling in winter wheat (Triticum aestivum L.) is limited. We conducted a dual labeling experiment to evaluate the variability of 13C and 15N enrichment in aboveground parts of labeled winter wheat plants. Labeling with 13C and 15N was performed on non-nitrogen fertilized (−N) and nitrogen fertilized (+N, 250 kg N ha−1) plants at the elongation and grain filling stages. Aboveground parts of wheat were destructively sampled at 28 days after labeling. As winter wheat growth progressed, δ13C values of wheat ears increased significantly, whereas those of leaves and stems decreased significantly. At the elongation stage, N addition tended to reduce the aboveground δ13C values through dilution of C uptake. At the two stages, upper (newly developed) leaves were more highly enriched with 13C compared with that of lower (aged) leaves. Variability between individual wheat plants and among pots at the grain filling stage was smaller than that at the elongation stage, especially for the −N treatment. Compared with those of 13C labeling, differences in 15N excess between aboveground components (leaves and stems) under 15N labeling conditions were much smaller. We conclude that non-N fertilization and labeling at the grain filling stage may produce more uniformly 13C-labeled wheat materials, whereas the materials were more highly 13C-enriched at the elongation stage, although the δ13C values were more variable. The 15N-enriched straw tissues via urea fertilization were more uniformly labeled at the grain filling stage compared with that at the elongation stage.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1392
Author(s):  
Stanisław Kalembasa ◽  
Jerzy Szukała ◽  
Agnieszka Faligowska ◽  
Dorota Kalembasa ◽  
Barbara Symanowicz ◽  
...  

A field experiment was carried out in 2016–2018 in a white lupin (Lupinus albus L.)-winter wheat (Triticum aestivum cv. ‘Bogatka’) crop rotation. The aim of this study was to determine the amount of nitrogen (N) that was biologically fixed by the white lupin crop in the first year of the rotation and to estimate how much of this N was then taken up from the lupin residues by winter wheat in the second and third years of the rotation. Biologically fixed N was determined by the isotope-dilution method (ID15N) by applying 30 kg N ha−1 of 15N-labeled fertilizer (15NH4)2SO4 (containing 20.1 at.% 15N) to the white lupin and the reference plant spring wheat. The yields of white lupin seeds and crop residues were 3.92 t ha−1 and 4.30 t ha−1, respectively. The total amount of N in the white lupin biomass was 243.2 kg ha−1, which included 209.3 kg ha−1 in the seeds and 33.9 kg ha−1 in the residues. The 15N-labeled residue of white lupin was cut and ploughed into soil. Our results indicate that 111.2 kg N ha−1 was fixed from the atmosphere by the lupin plants, with 93.7 kg ha−1 found in the seeds and 17.5 kg ha−1 in the residues. In the second and third years of the rotation when winter wheat was cultivated, the plots were divided into two groups of subplots (1) without N-fertilization (control) and (2) with an application of 100 kg N ha−1. In the first year of winter wheat cultivation, 20.0% and 21.0% of N from the crop residues was taken up by the control and N-fertilization plots, respectively, while in the second year, uptake was lower at 7.12% and 9.27% in the control and N-fertilized plots, respectively.


2011 ◽  
Vol 52 (No, 7) ◽  
pp. 308-313 ◽  
Author(s):  
P. Svoboda ◽  
J. Haberle

The effect of nitrogen fertilization on root length (RL) distribution of winter wheat (Triticum aestivum L.) was investigated. The study was conducted in Prague-Ruzyne on clay loam Chernozemic soil in the years 1996–2003. Two (N0, N1) and three (N0, N1, N2) treatments, unfertilized (N0), fertilized with 100 kg (N1) and 200 kg N/ha (N2) were studied in 1996–2000 and 2001–2003, respectively. Nitrogen rate 100 kg/ha had no effect on RL in soil layers (P > 0.1) in years 1996–2000 and 2002–2003 and there was not significant interaction between N treatment and soil layer except for year 1998 (P < 0.01). Nitrogen fertilization affected RL distribution significantly (P = 0.013) only in 2001 due to reduction of root growth in subsoil layers in treatment N2 (200 kg N/ha) in comparison with N0 and N1. The effect of N fertilization on total RL in rooted soil volume was insignificant. There was a significant effect of year on total RL (P < 0.01) but not of interaction of year and N treatment. Roots reached, with the exception of two years, the depth between 100 and 130 cm. Nitrogen fertilization (N1) had no effect (P = 0.59) on rooting depth (RD) in years 1996–2000 but there was a significant effect of interaction between year and N fertilization on RD (P < 0.01). In the second experimental series (2001–2003) N fertilization rate 200 kg N/ha significantly reduced maximum RD (P < 0.01) in comparison with N0 and N1. The year had highly significant effect on RD.


2013 ◽  
Vol 27 (4) ◽  
pp. 768-777 ◽  
Author(s):  
Alexander Menegat ◽  
Ortrud Jäck ◽  
Jinwei Zhang ◽  
Kathrin Kleinknecht ◽  
Bettina U. Müller ◽  
...  

Japanese bindweed was found to be one of the most abundant and most difficult-to-control weed species during a 2-yr weed survey in more than 100 winter wheat fields in the North China Plain region. Multivariate data analysis showed that Japanese bindweed is most abundant at sites with comparative low nitrogen (N) fertilization intensities and low crop densities. To gain deeper insights into the biology of Japanese bindweed under various N fertilization intensities, winter wheat seeding rates, herbicide treatments, and their interactions, a 2-yr field experiment was performed. In nonfertilized plots, a herbicide efficacy (based on density reduction) of 22% for 2,4-D, and of 25% for tribenuron-methyl was found. The maximum herbicide efficacy in Nmin-fertilized plots (target N value based on expected crop yield minus soil mineral nitrogen content,) was 32% for 2,4-D and 34% for tribenuron-methyl. In plots fertilized according to the farmer's practices, a maximum herbicide efficacy of 72% for 2,4-D and of 64% for tribenuron-methyl could be observed. Furthermore, medium and high seeding rates improved the herbicide efficacy by at least 39% for tribenuron-methyl and 44% for 2,4-D compared to the low seeding rate. Winter wheat yield was not significantly affected by seeding rate itself, whereas at low and medium seeding rates, Nminfertilization was decreasing winter wheat yield significantly compared to the farmer's usual fertilization practice. At the highest seeding rate, Nminfertilization resulted in equal yields compared to the farmer's practices of fertilization.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 313 ◽  
Author(s):  
Lukas Prey ◽  
Moritz Germer ◽  
Urs Schmidhalter

Fungicide intensity and sowing time influence the N use efficiency (NUE) of winter wheat but the underlying mechanisms, interactions of plant traits, and the temporal effects are not sufficiently understood. Therefore, organ-specific responses in NUE traits to fungicide intensity and earlier sowing were compared at two nitrogen (N) levels for six winter wheat cultivars in 2017. Plants were sampled at anthesis and at maturity and separated into chaff, grain, culms, and three leaf layers to assess their temporal contribution to aboveground dry matter (DM) and N uptake (Nup). Compared to the control treatment, across cultivars, the treatment without fungicide mostly exerted stronger and inverse effects than early sowing, on grain yield (GY, −12% without fungicide, +8% n.s. for early sowing), grain Nup (GNup, −9% n.s., +5% n.s.) as well as on grain N concentration (+4%, −2% n.s.). Grain yield in the treatment without fungicide was associated with similar total DM, as observed in the control treatment but with lower values in harvest index, thousand kernel weight, N use efficiency for GY (NUE) and N utilization efficiency. Lower GNup was associated with similar vegetative N uptake but lower values in N translocation efficiency and N harvest index. In contrast, early sowing tended to increase total DM at anthesis and maturity as well as post-anthesis assimilation, at similar harvest index and increased the number of grains per spike and total N use efficiency. Total N uptake increased after the winter season but was similar at anthesis. Although the relative N response in many traits was lower without fungicide, few fungicide x interactions were significant, and the sowing date did not interact either with N fertilization for any of the N and DM traits. The results demonstrate the positive effects of fungicides and earlier sowing on various traits related to yield formation and the efficient use of nitrogen and are discussed based on various concepts.


1992 ◽  
Vol 72 (1) ◽  
pp. 21-25 ◽  
Author(s):  
B. J. Zebarth ◽  
R. W. Sheard

The purpose of the study was to determine the influence of a previous legume or non-legume crop on the yield and crude protein response of hard red winter wheat to the rate of N fertilization. The average N requirement for the maximum economic production of wheat was reduced from 69 kg N ha−1 following corn to 0 kg ha−1 following alfalfa. Crude protein concentration was as much as 2% higher following alfalfa than corn; however, an average of 144 kg N ha−1 following corn and 59 kg N ha−1 following alfalfa was necessary to achieve the optimum level of 13.5% crude protein in the wheat.Key words: Corn, alfalfa, ICM


2014 ◽  
Vol 27 (1) ◽  
pp. 589-600 ◽  
Author(s):  
Stamatis Stamatiadis ◽  
Lefteris Evangelou ◽  
Jean-Claude Yvin ◽  
Christos Tsadilas ◽  
José Maria Garcia Mina ◽  
...  

1997 ◽  
Vol 128 (1) ◽  
pp. 79-86 ◽  
Author(s):  
K. SIELING ◽  
O. GÜNTHER-BORSTEL ◽  
H. HANUS

Nitrogen (N) fertilizer not used by the crop can increase the risk of nitrate leaching into the groundwater. In two growing seasons, 1990/91 and 1991/92, the relationships between N fertilization and yield, N uptake by the grain and the N leaching in the subsequent percolation period were investigated in a multifactorial field experiment at Hohenschulen Experimental Station near Kiel in NW Germany. The crop rotation was oilseed rape – winter wheat – winter barley, and effects of soil tillage (minimum tillage without ploughing, conventional tillage), application of pig slurry (none, application in autumn, application in autumn and in spring), mineral N fertilization (none, 80 or 200 kg N ha−1 to oilseed rape and 120 or 240 kg N ha−1 to cereals) and application of fungicides (none, intensive) were all tested. In each year, the rotation and the treatments were located on the same plots. Mineral N fertilization and fungicide application increased yield and N uptake by grain or seed in all crops. In contrast, the application of slurry, especially in autumn, had only small effects on yield and N uptake. Nitrogen losses by leaching (measured using porous ceramic cups) were affected mainly by the year and the crop. In 1992/93, averaged over all factors, 80 kg N ha−1 was leached compared with 28 kg N ha−1 the previous year. Oilseed rape reduced N losses, whereas under winter wheat up to 160 kg N ha−1 was leached. Due to a lower N-use efficiency, autumn applications of slurry increased N leaching, and mineral N fertilization of the preceding crop also led to higher N losses.Since the amount of leached N depends both on the nitrogen left by the preceding crop (unused fertilizer N as well as N in residues) and on N uptake by the subsequent crop, it is not possible to apportion the N losses to any particular crop in the rotation. The cropping sequence, together with its previous and subsequent crops, must also be considered.To minimize leaching, N fertilization must meet the needs of the growing crop. In order to improve the efficiency further, investigations must be conducted in order to understand the dynamics of N in the plant–soil system in conjunction with the weather and crop management practices.


Sign in / Sign up

Export Citation Format

Share Document