Analysis of buried oxide layer formation and mechanism of threading dislocation generation in the substoichiometric oxygen dose region

1993 ◽  
Vol 8 (3) ◽  
pp. 523-534 ◽  
Author(s):  
Sadao Nakashima ◽  
Katsutoshi Izumi

The structure of SIMOX wafers implanted at 180 keV with doses of 0.1 × 1018-2.0 × 101816O+ cm−2 at 550 °C, followed by annealing over the temperature range of 1050–1350 °C, has been investigated using cross-sectional transmission electron microscopy and a chemical etching. With doses of 0.35 × 1018-0.4 × 1018 cm−2, a continuous buried oxide layer having no Si island inside is formed by high-temperature annealing at 1350 °C. At a dose of 0.7 × 1018 cm−2, multilayered oxide striations appear in the as-implanted wafer. These striations grow into multiple buried oxide layers after annealing at 1150 °C. The multiple layers lead to a discontinuous buried oxide layer, resulting in the formation of a number of Si micropaths between the top Si layer and the Si substrate when the wafer is annealed at 1350 °C. These Si paths cause the breakdown electric field strength of the buried oxide layer to deteriorate. With doses of 0.2 × 1018-0.3 × 1018 cm−2 and of higher than 1.3 × 1018 cm−2, an extremely high density of threading dislocations is generated in the top Si layer after annealing at 1350 °C. The dislocation density is greatly reduced to less than 103 cm−2 when the oxygen dose falls in the range of 0.35 × 1018-1.2 × 1018 cm−2. Here we propose a mechanism that accounts for the threading dislocation generation at substoichiometric oxygen doses of less than 1.2 × 1018 cm−2.

2002 ◽  
Vol 743 ◽  
Author(s):  
D. M. Follstaedt ◽  
P. P. Provencio ◽  
D. D. Koleske ◽  
C. C. Mitchell ◽  
A. A. Allerman ◽  
...  

ABSTRACTThe density of vertical threading dislocations at the surface of GaN grown on sapphire by cantilever epitaxy has been reduced with two new approaches. First, narrow mesas (<1 μm wide) were used and {11–22} facets formed over them early in growth to redirect dislocations from vertical to horizontal. Cross-sectional transmission electron microscopy was used to demonstrate this redirection and to identify optimum growth and processing conditions. Second, a GaN nuc-leation layer with delayed 3D → 2D growth transition and inherently lower threading dislocation density was adapted to cantilever epitaxy. Several techniques show that a dislocation density of only 2–3×107/cm2 was achieved by combining these two approaches. We also suggest other developments of cantilever epitaxy for reducing dislocations in heteroepitaxial systems.


1985 ◽  
Vol 53 ◽  
Author(s):  
S.J. Krause ◽  
C.O. Jung ◽  
S.R. Wilson ◽  
R.P. Lorigan ◽  
M.E. Burnham

ABSTRACTOxygen has been implanted into Si wafers at high doses and elevated temperatures to form a buried SiO2 layer for use in silicon-on-insulator (SOI) structures. Substrate heater temperatures have been varied (300, 400, 450 and 500°C) to determine the effect on the structure of the superficial Si layer through a processing cycle of implantation, annealing, and epitaxial growth. Transmission electron microscopy was used to characterize the structure of the superficial layer. The structure of the samples was examined after implantation, after annealing at 1150°C for 3 hours, and after growth of the epitaxial Si layer. There was a marked effect on the structure of the superficial Si layer due to varying substrate heater temperature during implantation. The single crystal structure of the superficial Si layer was preserved at all implantation temperatures from 300 to 500°C. At the highest heater temperature the superficial Si layer contained larger precipitates and fewer defects than did wafers implanted at lower temperatures. Annealing of the as-implanted wafers significantly reduced structural differences. All wafers had a region of large, amorphous 10 to 50 nm precipitates in the lower two-thirds of the superficial Si layer while in the upper third of the layer there were a few threading dislocations. In wafers implanted at lower temperatures the buried oxide grew at the top surface only. During epitaxial Si growth the buried oxide layer thinned and the precipitate region above and below the oxide layer thickened for all wafers. There were no significant structural differences of the epitaxial Si layer for wafers with different implantation temperatures. The epitaxial layer was high quality single crystal Si and contained a few threading dislocations. Overall, structural differences in the epitaxial Si layer due to differences in implantation temperature were minimal.


1992 ◽  
Vol 280 ◽  
Author(s):  
Z. Ma ◽  
L. H. Allen

ABSTRACTSolid phase epitaxial (SPE) growth of SixGei1-x alloys on Si (100) was achieved by thermal annealing a-Ge/Au bilayers deposited on single crystal Si substrate in the temperature range of 280°C to 310°C. Growth dynamics was investigated using X-ray diffraction, Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy. Upon annealing, Ge atoms migrate along the grain boundaries of polycrystalline Au and the epitaxial growth initiates at localized triple points between two Au grains and Si substrate, simultaneously incorporating a small amount of Si dissolved in Au. The Au is gradually displaced into the top Ge layer. Individual single crystal SixGei1-x islands then grow laterally as well as vertically. Finally, the islands coalesce to form a uniform layer of epitaxial SixGe1-x alloy on the Si substrate. The amount of Si incorporated in the final epitaxial film was found to be dependent upon the annealing temperature.


1993 ◽  
Vol 319 ◽  
Author(s):  
A.R. Powell ◽  
S.S. Iyer ◽  
F.K. Legoues

AbstractIn this growth process a new strain relief mechanism operates, whereby the SiGe epitaxial layer relaxes without the generation of threading dislocations within the SiGe layer. This is achieved by depositing SiGe on an ultrathin Silicon On Insulator, SOl, substrate with a superficial silicon thickness less than the SiGe layer thickness. Initially, the thin Si layer is put under tension due to an equalization of the strain between the Si and SiGe layers. Thereafter, the strain created in the thin Si layer relaxes by plastic deformation. Since the dislocations are formed and glide in the thin Si layer, no threading dislocation is ever introduced into the upper SiGe material, which appeared dislocation free to the limit of the cross sectional Transmission Electron Microscopy (TEM) analysis. We thus have a method for producing very low dislocation, relaxed SiGe films with the additional benefit of an SO substrate. This buffer structure is significantly less than a micrometer in thickness and offers distinct advantages over the thick SiGe buffer layers presently in use.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6599
Author(s):  
Eri Miura-Fujiwara ◽  
Soichiro Yamada ◽  
Keisuke Mizushima ◽  
Masahiko Nishijima ◽  
Yoshimi Watanabe ◽  
...  

We found that specific biomedical Ti and its alloys, such as CP Ti, Ti–29Nb–13Ta–4.6Zr, and Ti–36Nb–2Ta–3Zr–0.3O, form a bright white oxide layer after a particular oxidation heat treatment. In this paper, the interfacial microstructure of the oxide layer on Ti–29Nb–13Ta–4.6Zr and the exfoliation resistance of commercially pure (CP) Ti, Ti–29Nb–13Ta–4.6Zr, and Ti–36Nb–2Ta–3Zr–0.3O were investigated. The alloys investigated were oxidized at 1273 or 1323 K for 0.3–3.6 ks in an air furnace. The exfoliation stress of the oxide layer was high in Ti–29Nb–13Ta–4.6Zr and Ti–36Nb–2Ta–3Zr–0.3O, and the maximum exfoliation stress was as high as 70 MPa, which is almost the same as the stress exhibited by epoxy adhesives, whereas the exfoliation stress of the oxide layer on CP Ti was less than 7 MPa, regardless of duration time. The nanoindentation hardness and frictional coefficients of the oxide layer on Ti–29Nb–13Ta–4.6Zr suggested that the oxide layer was hard and robust enough for artificial tooth coating. The cross-sectional transmission electron microscopic observations of the microstructure of oxidized Ti–29Nb–13Ta–4.6Zr revealed that a continuous oxide layer formed on the surface of the alloys. The Au marker method revealed that both in- and out-diffusion occur during oxidation in Ti–29Nb–13Ta–4.6Zr and Ti–36Nb–2Ta–3Zr–0.3O, whereas only out-diffusion governs oxidation in CP Ti. The obtained results indicate that the high exfoliation resistance of the oxide layer on Ti–29Nb–13Ta–4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O are attributed to their dense microstructures composing of fine particles, and a composition-graded interfacial microstructure. On the basis of the results of our microstructural observations, the oxide formation mechanism of the Ti–Nb–Ta–Zr alloy is discussed.


2019 ◽  
Vol 806 ◽  
pp. 30-35
Author(s):  
Nikolay Gennadievich Galkin ◽  
Konstantin N. Galkin ◽  
Sergei Andreevich Dotsenko ◽  
Dmitrii L'vovich Goroshko ◽  
Evgeniy Anatolievich Chusovitin ◽  
...  

The morphology and structure of iron silicide nanorods formed on Si (111) vicinal surface by the SPE method at T = 630 °C were studied. Optimal Fe coverage and Fe deposition rate for the formation of a dense array of the nanorods (54-65% of the substrate area) on Si (111) surface with 3-4o miscut angles were established. The aspect ratio of the nanorods is 1.9 – 3.3. Cross-sectional images of a high-resolution transmission electron microscopy (HRTEM) have shown that the nanorods have α-FeSi2 crystal structure. They are strained along the “a” axis and stretched along the “c” axis, which increased the unit cell volume by 10.3%. According to HRTEM image analysis, the nanorods have the following epitaxial relationships: α-FeSi2[01]//Si [10] and α-FeSi2(112)//Si (111). All the data obtained have provided, for the first time, a direct evidence of α-FeSi2 nanorods formation on Si (111) vicinal surface without noticeable penetration of Fe atoms into the Si substrate.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
J. Smalc-Koziorοwska ◽  
J. Moneta ◽  
P. Chatzopoulou ◽  
I. G. Vasileiadis ◽  
C. Bazioti ◽  
...  

Abstract III-nitride compound semiconductors are breakthrough materials regarding device applications. However, their heterostructures suffer from very high threading dislocation (TD) densities that impair several aspects of their performance. The physical mechanisms leading to TD nucleation in these materials are still not fully elucidated. An overlooked but apparently important mechanism is their heterogeneous nucleation on domains of basal stacking faults (BSFs). Based on experimental observations by transmission electron microscopy, we present a concise model of this phenomenon occurring in III-nitride alloy heterostructures. Such domains comprise overlapping intrinsic I1 BSFs with parallel translation vectors. Overlapping of two BSFs annihilates most of the local elastic strain of their delimiting partial dislocations. What remains combines to yield partial dislocations that are always of screw character. As a result, TD nucleation becomes geometrically necessary, as well as energetically favorable, due to the coexistence of crystallographically equivalent prismatic facets surrounding the BSF domain. The presented model explains all observed BSF domain morphologies, and constitutes a physical mechanism that provides insight regarding dislocation nucleation in wurtzite-structured alloy epilayers.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3645
Author(s):  
Liyao Zhang ◽  
Yuxin Song ◽  
Nils von den Driesch ◽  
Zhenpu Zhang ◽  
Dan Buca ◽  
...  

The structural properties of GeSn thin films with different Sn concentrations and thicknesses grown on Ge (001) by molecular beam epitaxy (MBE) and on Ge-buffered Si (001) wafers by chemical vapor deposition (CVD) were analyzed through high resolution X-ray diffraction and cross-sectional transmission electron microscopy. Two-dimensional reciprocal space maps around the asymmetric (224) reflection were collected by X-ray diffraction for both the whole structures and the GeSn epilayers. The broadenings of the features of the GeSn epilayers with different relaxations in the ω direction, along the ω-2θ direction and parallel to the surface were investigated. The dislocations were identified by transmission electron microscopy. Threading dislocations were found in MBE grown GeSn layers, but not in the CVD grown ones. The point defects and dislocations were two possible reasons for the poor optical properties in the GeSn alloys grown by MBE.


1995 ◽  
Vol 402 ◽  
Author(s):  
André Vantommela ◽  
Stefan Degroote ◽  
Johan Dekoster ◽  
Hugo Bender ◽  
Guido Langouche

AbstractEpitaxial CoSi2(100) layers in the thickness range of 20 to 50 nm have been formed by reactive deposition epitaxy (i.e. Co deposition onto a hot Si substrate) without the use of either a template or an intermediate Ti layer. It is explained how growth parameters such as the deposition rate and substrate temperature are crucial in determining the epitaxial nature of the silicide. According to this model, good CoSi2/Si(100) alignment is only achieved when very low deposition rates are used (0.1 Å/s or less), combined with relatively high substrate temperatures during deposition (∼ 600°C or higher). Using these conditions, highly strained, continuous CoSi2 layers with a channeling minimum yield of χmin = 9% could be formed. Using higher rates and/or lower deposition temperatures, an increasing fraction of misoriented CoSi2 grains is presumed from backscattering/channeling and x-ray experiments, the nature of which is under investigation with plan view and cross sectional transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document