Metalorganic chemical vapor deposition of carbon-free ZnO using the bis(2,2,6,6-tetramethyl-3,5-heptanedionato)zinc precursor

2007 ◽  
Vol 22 (5) ◽  
pp. 1230-1234 ◽  
Author(s):  
L.V. Saraf ◽  
M.H. Engelhard ◽  
C.M. Wang ◽  
A.S. Lea ◽  
D.E. McCready ◽  
...  

Bis(2,2,6,6-tetramethyl-3,5-heptanedionato)zinc [Zn(TMHD)2] is a relatively uninvestigated precursor that was used in this work to grow highly c-axis-oriented ZnO films on Si(100). X-ray photoelectron spectroscopy studies before and after Ar ion sputtering indicated that surface carbon on several samples was reduced from as much as 34 at.% to much less than 1 at.% within the first 5 nm, indicating very clean Zn(TMHD)2 precursor decomposition. Microstructural and compositional analysis revealed columnar ZnO grains with domain widths of approximately half the total film thickness and a Zn-to-O atomic percent ratio indicative of stoichometric ZnO.

1996 ◽  
Vol 11 (10) ◽  
pp. 2463-2469 ◽  
Author(s):  
M. K. Puchert ◽  
A. Hartmann ◽  
R. N. Lamb ◽  
J. W. Martin

Polycrystalline (0001)-oriented thin films of ZnO (thickness 120 nm) were deposited by rf magnetron sputtering and post-deposition annealed at 500 °C in oxygen (1 atm). The films were subsequently implanted with copper at doses over the range 1016 to 1017 ions/cm2. X-ray diffraction (XRD) indicates the compressive intrinsic film stress is largely relieved by the preimplantation anneal, and does not change when implanted or when further annealed after implantation, suggesting that the dominant cause of intrinsic stress is the atomic packing density rather than the crystallographic defect density. Resistivity measurements indicate that annealing of pure ZnO films causes the perpendicular resistivity to increase from 1.3 × 105 Ω · cm to 5 × 1010 Ω · cm. Copper implantation results in a lower resistivity of the order of 107 Ω · cm, but subsequent annealing actually increases resistivity beyond that of annealed nonimplanted ZnO to 3 × 1012 Ω · cm. It is proposed that copper increases the resistivity of those annealed films by trapping free electrons with the Cu 3d hole state occurring in CuO (formed predominantly during annealing). In order to check this, the oxidation state of the implanted copper was studied before and after annealing by x-ray photoelectron spectroscopy (XPS) and extended x-ray absorption fine structure (EXAFS). Three oxidation states of copper (Cu0, Cu1+, Cu2+) are detected in the implanted films, and postimplantation annealing results in oxidation of copper to the Cu2+ state, confirming that the presence of CuO in ZnO is associated with increased resistivity.


1996 ◽  
Vol 424 ◽  
Author(s):  
Je-Hsiung Lan ◽  
Jerzy Kanicki

AbstractThe effects of the atomic hydrogen treatment (H-treatment) of indium-tin oxide (ITO) and aluminum-doped zinc oxide (AZO) films have been investigated. The atomic hydrogen was generated by hot-wire chemical vapor deposition (HW-CVD) technique. Experimental results have shown that AZO films are chemically very stable under the H-treatment; almost no variation in the optical transmittance and electrical resistivity was observed. On the contrary, ITO films, either prepared by sputtering with ex-situ or in-situ thermal-annealing, have shown severe optical and electrical degradation and surface whitening after the H-treatment. SEM studies of the H-treated ITO surfaces have revealed that the surface whitening was due to the increase in surface roughness and the formation of granule-like metallic balls. Auger electron spectroscopy has indicated that the balls were mainly composed of indium atoms and the areas between balls were rich in oxygen atoms. These results were confirmed by X-ray diffraction and X-ray photoelectron spectroscopy measurements done on ITO before and after the H-treatment. Finally, we have demonstrated that a-SiO, deposited by PECVD will completely suppress the chemical reaction between ITO surfaces and atomic hydrogen generated by HW-CVD technique.


2002 ◽  
Vol 16 (08) ◽  
pp. 1261-1267 ◽  
Author(s):  
M. P. SINGH ◽  
S. A. SHIVASHANKAR ◽  
T. SHRIPATHI

We have studied the chemical composition of alumina ( Al 2 O 3) films grown on Si(100) at different substrate temperatures by metalorganic chemical vapor deposition (MOCVD) using aluminium acetylactonate { Al(acac) 3} as the precursor. We have found that the resulting films of Al 2 O 3 contain substantial amounts of carbon. X-ray photoelectron spectroscopy (XPS) was employed to study the chemical state of carbon present in such films. The XPS spectrum reveals that the carbon present in Al 2 O 3 film is graphitic in nature. Auger electron spectroscopy (AES) was employed to study the distribution of carbon in the Al 2 O 3 films. The AES depth profile reveals that carbon is present throughout the film. The AES study on Al 2 O 3 films corroborates the XPS findings. An investigation of the Al 2 O 3/ Si (100) interface was carried out using cross-sectional transmission electron microscopy (XTEM). The TEM study reveals textured growth of alumina film on Si(100), with very fine grains of alumina embedded in an amorphous carbon-containing matrix.


2006 ◽  
Vol 321-323 ◽  
pp. 1687-1690 ◽  
Author(s):  
Hee Joon Kim ◽  
Dong Young Jang ◽  
Prem Kumar Shishodia ◽  
Akira Yoshida

In the paper, zinc oxide (ZnO) thin films are deposited by plasma enhanced chemical vapor deposition (PECVD) at different substrate temperatures. The ZnO films are characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The analysis results indicate that highly crystalline films with high orientation can be obtained at a substrate temperature of 300 oC with 50 ml/min flow rate from Diethylzinc (DEZ). Furthermore, the investigation of optical property shows that ZnO films are transparent, and the peak transmittance in the visible region is as high as 85%.


2011 ◽  
Vol 1313 ◽  
Author(s):  
Lamartine Meda

ABSTRACTLithium phosphorus oxynitride (Lipon) thin films have been deposited by a plasmaenhanced metalorganic chemical vapor deposition (PE-MOCVD) method using triethyl phosphate [(CH2CH3)3PO4] and lithium tert-butoxide [(LiOC(CH3)3] precursors. Growth rates were between 100 and 415 Å/min, and thicknesses ranged from 1 to 2.5 μm. X-ray powder diffraction showed that the films were amorphous, and X-ray photoelectron spectroscopy revealed approximately 6.9 at.% carbon in the films. The ionic conductivity of Lipon was measured using electrochemical impedance spectroscopy (EIS) and approximately 1.02 μS/cm was obtained, which is consistent with the ionic conductivity of Lipon deposited by radio frequency magnetron sputtering of Li3PO4 targets. An all-solid-state thin-film lithium microbattery such as Li/Lipon/LiCoO2/Au/substrate was successfully fabricated with Lipon deposited by PE-MOCVD. The battery has a capacity of ca. 22 μAh/cm2μm.


1997 ◽  
Vol 12 (1) ◽  
pp. 100-105 ◽  
Author(s):  
S. Santucci ◽  
E. Cordeschi ◽  
L. Lozzi ◽  
M. Passacantando ◽  
P. Picozzi ◽  
...  

Silicon suboxides thin films obtained by sol-gel and dip-coating methods, starting from a sol containing different percentages of TEOS (tetraethoxysilane) and MTEOS (methyltriethoxysilane), were grown onto silicon substrates. The samples were annealed at 100, 300, and 500 °C, and the electronic and compositional properties of the surface were studied by x-ray photoelectron spectroscopy (XPS) detecting the Si “Auger parameter” and the valence band. The effects produced by an ion-sputtering treatment of the samples were also studied.


Sign in / Sign up

Export Citation Format

Share Document