Highly resistive sputtered ZnO films implanted with copper

1996 ◽  
Vol 11 (10) ◽  
pp. 2463-2469 ◽  
Author(s):  
M. K. Puchert ◽  
A. Hartmann ◽  
R. N. Lamb ◽  
J. W. Martin

Polycrystalline (0001)-oriented thin films of ZnO (thickness 120 nm) were deposited by rf magnetron sputtering and post-deposition annealed at 500 °C in oxygen (1 atm). The films were subsequently implanted with copper at doses over the range 1016 to 1017 ions/cm2. X-ray diffraction (XRD) indicates the compressive intrinsic film stress is largely relieved by the preimplantation anneal, and does not change when implanted or when further annealed after implantation, suggesting that the dominant cause of intrinsic stress is the atomic packing density rather than the crystallographic defect density. Resistivity measurements indicate that annealing of pure ZnO films causes the perpendicular resistivity to increase from 1.3 × 105 Ω · cm to 5 × 1010 Ω · cm. Copper implantation results in a lower resistivity of the order of 107 Ω · cm, but subsequent annealing actually increases resistivity beyond that of annealed nonimplanted ZnO to 3 × 1012 Ω · cm. It is proposed that copper increases the resistivity of those annealed films by trapping free electrons with the Cu 3d hole state occurring in CuO (formed predominantly during annealing). In order to check this, the oxidation state of the implanted copper was studied before and after annealing by x-ray photoelectron spectroscopy (XPS) and extended x-ray absorption fine structure (EXAFS). Three oxidation states of copper (Cu0, Cu1+, Cu2+) are detected in the implanted films, and postimplantation annealing results in oxidation of copper to the Cu2+ state, confirming that the presence of CuO in ZnO is associated with increased resistivity.

2007 ◽  
Vol 22 (5) ◽  
pp. 1230-1234 ◽  
Author(s):  
L.V. Saraf ◽  
M.H. Engelhard ◽  
C.M. Wang ◽  
A.S. Lea ◽  
D.E. McCready ◽  
...  

Bis(2,2,6,6-tetramethyl-3,5-heptanedionato)zinc [Zn(TMHD)2] is a relatively uninvestigated precursor that was used in this work to grow highly c-axis-oriented ZnO films on Si(100). X-ray photoelectron spectroscopy studies before and after Ar ion sputtering indicated that surface carbon on several samples was reduced from as much as 34 at.% to much less than 1 at.% within the first 5 nm, indicating very clean Zn(TMHD)2 precursor decomposition. Microstructural and compositional analysis revealed columnar ZnO grains with domain widths of approximately half the total film thickness and a Zn-to-O atomic percent ratio indicative of stoichometric ZnO.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3588
Author(s):  
Jiayi Chen ◽  
Yansong Liu ◽  
Jiayue Zhang ◽  
Yuanlin Ren ◽  
Xiaohui Liu

Lyocell fabrics are widely applied in textiles, however, its high flammability increases the risk of fire. Therefore, to resolve the issue, a novel biomass-based flame retardant with phosphorus and nitrogen elements was designed and synthesized by the reaction of arginine with phosphoric acid and urea. It was then grafted onto the lyocell fabric by a dip-dry-cure technique to prepare durable flame-retardant lyocell fabric (FR-lyocell). X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated that the flame retardant was successfully introduced into the lyocell sample. Thermogravimetric (TG) and Raman analyses confirmed that the modified lyocell fabric featured excellent thermal stability and significantly increased char residue. Vertical combustion results indicated that FR-lyocell before and after washing formed a complete and dense char layer. Thermogravimetric Fourier-transform infrared (TG-FTIR) analysis suggested that incombustible substances (such as H2O and CO2) were produced and played a significant fire retarding role in the gas phase. The cone calorimeter test corroborated that the peak of heat release rate (PHRR) and total heat release (THR) declined by 89.4% and 56.4%, respectively. These results indicated that the flame retardancy of the lyocell fabric was observably ameliorated.


2013 ◽  
Vol 1494 ◽  
pp. 77-82
Author(s):  
T. N. Oder ◽  
A. Smith ◽  
M. Freeman ◽  
M. McMaster ◽  
B. Cai ◽  
...  

ABSTRACTThin films of ZnO co-doped with lithium and phosphorus were deposited on sapphire substrates by RF magnetron sputtering. The films were sequentially deposited from ultra pure ZnO and Li3PO4 solid targets. Post deposition annealing was carried using a rapid thermal processor in O2 and N2 at temperatures ranging from 500 °C to 1000 °C for 3 min. Analyses performed using low temperature photoluminescence spectroscopy measurements reveal luminescence peaks at 3.359, 3.306, 3.245 eV for the co-doped samples. The x-ray diffraction 2θ-scans for all the films showed a single peak at about 34.4° with full width at half maximum of about 0.17°. Hall Effect measurements revealed conductivities that change from p-type to n-type over time.


CORROSION ◽  
10.5006/3881 ◽  
2021 ◽  
Author(s):  
Zachary Karmiol ◽  
Dev Chidambaram

This work investigates the oxidation of a nickel based superalloy, namely Alloy X, in water at elevated temperatures: subcritical water at 261°C and 27 MPa, the transition between subcritical and supercritical water at 374°C and 27 MPa, and supercritical water at 380°C and 27 MPa for 100 hours. The morphology of the sample surfaces were studied using scanning electron microscopy coupled with focused ion beam milling, and the surface chemistry was investigated using X-ray diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy before and after exposure studies. Surfaces of all samples were identified to comprise of a ferrite spinel containing aluminum.


Author(s):  
Sahadeb Ghosh ◽  
Mangala Nand ◽  
Rajiv Kamparath ◽  
Mukul Gupta ◽  
Devdatta M Phase ◽  
...  

Abstract Oriented thin films of β-(Ga1-xFex)2O3 have been deposited by RF magnetron sputtering on c-Al2O3 and GaN substrates. The itinerant character of Fe 3d states forming the top of the valence band (VB) of Fe substituted of β-Ga2O3 thin films has been determined from resonant photoelectron spectroscopy (RPES). Further, admixture of itinerant and localized character of these Fe 3d sates is obtained for larger binding energies i.e deeper of VB. The bottom of the conduction band (CB) for β-(Ga1-xFex)2O3 is also found to be strongly hybridized states involving Fe 3d and O 2p states as compared to that of Ga 4s in pristine β-Ga2O3. This suggests that β-Ga2O3 transforms from band like system to a charge transfer system with Fe substitution. Furthermore, the bandgap red shits with Fe composition, which has been found to be primarily related to the shift of the CB edge.


2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5043
Author(s):  
Chia-Hsun Hsu ◽  
Xin-Peng Geng ◽  
Wan-Yu Wu ◽  
Ming-Jie Zhao ◽  
Xiao-Ying Zhang ◽  
...  

In this study, aluminum-doped zinc oxide (Al:ZnO) thin films were grown by high-speed atmospheric atomic layer deposition (AALD), and the effects of air annealing on film properties are investigated. The experimental results show that the thermal annealing can significantly reduce the amount of oxygen vacancies defects as evidenced by X-ray photoelectron spectroscopy spectra due to the in-diffusion of oxygen from air to the films. As shown by X-ray diffraction, the annealing repairs the crystalline structure and releases the stress. The absorption coefficient of the films increases with the annealing temperature due to the increased density. The annealing temperature reaching 600 °C leads to relatively significant changes in grain size and band gap. From the results of band gap and Hall-effect measurements, the annealing temperature lower than 600 °C reduces the oxygen vacancies defects acting as shallow donors, while it is suspected that the annealing temperature higher than 600 °C can further remove the oxygen defects introduced mid-gap states.


2020 ◽  
Vol 81 (10) ◽  
pp. 2270-2280
Author(s):  
Yonggang Xu ◽  
Tianxia Bai ◽  
Yubo Yan ◽  
Yunfeng Zhao ◽  
Ling Yuan ◽  
...  

Abstract It is of great significance to remove Cr(VI) from water as a result of its high toxicity. Biochar from corn straw was modified by different acids (HNO3, H2SO4 and H3PO4) to remove Cr(VI) from aqueous solution. To estimate the removal mechanisms of Cr(VI) by the acid-modified biochars, batch experiments were performed in the light of contact time, Cr(VI) concentration, and pH, and the characteristics of acid-modified biochars before and after Cr(VI) adsorption were investigated by Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The adsorption kinetics of Cr(VI) by acid-modified biochars were consistent with the pseudo-second-order model, and the adsorption isotherm obeyed the Freundlich model. Furthermore, the acid- modified biochars could supply more oxygen-containing functional groups (-COOH and -OH) as electron donor (e−) and hydrogen ion (H+) to enhance the reduction of Cr(VI) to Cr(III), resulting in enhanced removal of Cr(VI). HNO3-modified biochar exhibited the highest removal efficiency of Cr(VI). In general, the acid modifition of biochar was an effective method to increase the removal of Cr(VI).


Author(s):  
Haixia Wang ◽  
Mingliang Zhang ◽  
Hongyi Li

Maize straw biochar-supported nanoscale zero-valent iron composite (MSB-nZVI) was prepared for efficient chromium (Cr) removal through alleviating the aggregation of zero-valent iron particles. The removal mechanism of MSB-nZVI was investigated by scanning electron microscopy with energy dispersive X-ray (SEM-EDX), X-ray diffractometry (XRD), and X-ray photoelectron spectroscopy (XPS). Cr(VI) removal from aqueous solution by MSB-nZVI was greatly affected by pH and initial concentration. The removal efficiency of Cr(VI) decreased with increasing pH, and the removal kinetics followed the pseudo-second-order model. XRD patterns of MSB-nZVI before and after reaction showed that reduction and precipitation/co-precipitation (FeCr2O4, Fe3O4, Fe2O3) occurred with the conversion of Cr(VI) to Cr(III) and Fe(0) to Fe(II)/Fe(III). The produced precipitation/co-precipitation could be deposited on the MSB surface rather than being only coated on the surface of nZVI particles, which can alleviate passivation of nZVI. For remediation of Cr(VI)-contaminated saline–alkali soil (pH 8.6–9.0, Cr 341 mg/kg), the released amount of Cr(VI) was 70.7 mg/kg, while it sharply decreased to 0.6–1.7 mg/kg at pH 4.0–8.0, indicating that the saline–alkali environment inhibited the remediation efficiency. These results show that MSB-nZVI can be used as an effective material for Cr(VI) removal from aqueous solution and contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document