Gold in Flux-less Bonding: Noble or not Noble

2011 ◽  
Vol 1299 ◽  
Author(s):  
Marco Balucani ◽  
Paolo Nenzi ◽  
Fabrizio Palma ◽  
Hanna Bandarenka ◽  
Leonid Dolgyi ◽  
...  

ABSTRACTThis work highlights the solder joints reliability issues emerged during the development of a novel compliant contacting technology. The peculiar process in this technology is a mechanical lifting procedure in which a pulling force is exerted onto 63Sn-37Pb (eutectic) solder joints (realized by a flux-less thermo compression process), releasing metal traces from the substrate, to form free standing vertical structures. Since joints mechanical characteristics are critical for the successful fabrication of contacts, different bonding conditions (inert or forming atmosphere, temperature rates) and surface finishing (electroplated gold and preformed solder) have been tested. SEM and EDX analyses have been performed on failing joints to investigate failure causes and classify defect typologies. A constantly higher failure rate (percent number of failing joints) has been observed on gold finished surfaces. Analyses proved that such unusual rate was due to contamination of gold surface left by additives in the plating bath and to the embrittlement caused by gold diffusion into molten solder. Plating additives contamination reduces the wettability of gold surfaces. Concentration values of 3 wt.% for gold, considered safe for surface mount applications, caused embrittlement in solder bumps of 20-40 μm diameters.

2015 ◽  
Vol 772 ◽  
pp. 284-289 ◽  
Author(s):  
Sabuj Mallik ◽  
Jude Njoku ◽  
Gabriel Takyi

Voiding in solder joints poses a serious reliability concern for electronic products. The aim of this research was to quantify the void formation in lead-free solder joints through X-ray inspections. Experiments were designed to investigate how void formation is affected by solder bump size and shape, differences in reflow time and temperature, and differences in solder paste formulation. Four different lead-free solder paste samples were used to produce solder bumps on a number of test boards, using surface mount reflow soldering process. Using an advanced X-ray inspection system void percentages were measured for three different size and shape solder bumps. Results indicate that the voiding in solder joint is strongly influenced by solder bump size and shape, with voids found to have increased when bump size decreased. A longer soaking period during reflow stage has negatively affectedsolder voids. Voiding was also accelerated with smaller solder particles in solder paste.


Author(s):  
Hiroyuki Tsuritani ◽  
Toshihiko Sayama ◽  
Yoshiyuki Okamoto ◽  
Takeshi Takayanagi ◽  
Masato Hoshino ◽  
...  

The reliability of solder joints on printed circuit boards (PCBs) is significantly affected by thermal fatigue processes due to downsizing and high density packaging in electronic components. Accordingly, there is a strong desire in related industries for development of a new nondestructive inspection technology to detect fatigue cracks appearing in these joints. The authors have applied the SP-μCT, a synchrotron radiation X-ray microtomography system, to the nondestructive observation of such cracks. However, for planar objects such as PCB substrates, reconstruction of CT images is difficult due to insufficient X-ray transmission along the parallel axis of the substrate. In order to solve this problem, a synchrotron radiation X-ray laminography system was developed to overcome the size limits of such specimens. In this work, this system was applied to the three-dimensional, nondestructive observation of thermal fatigue cracks in solder joints, for which X-ray CT inspection has been extremely difficult. The observed specimens included two typical joint structures formed using Sn-3.0Ag-0.5Cu solder: (1) a fine pitch ball grid array (FBGA) joint specimen in which an LSI package is connected to a substrate by solder bumps 360 μm in diameter, and (2) a die-attached specimen in which a 3 mm square ceramic chip is mounted on a substrate. The optical system developed for use in X-ray laminography was constructed to provide a rotation axis with a 30° tilt from the right angle to the X-ray beam, and to obtain X-ray projection images via the beam monitor. The same solder joints were observed successively using the laminography system at beamline BL20XU at SPring-8, the largest synchrotron radiation facility in Japan. In the FBGA type specimen, fatigue cracks were clearly observed to appear at the periphery of the joint interface, and to propagate gradually to the inner regions of the solder bumps as thermal cycling proceeded. In contrast, in the die-attached joint specimen, micro-cracks were observed to appear and propagate through the thin solder layer. An important observation was that these micro-cracks become interconnected prior to propagation of the main fatigue crack. The fatigue crack propagation lifetime was also estimated in both specimens by measuring the crack surface area and calculating the average crack propagation rate through the three-dimensional images. Consequently, the sectional images obtained by the laminography system clearly show the process of crack propagation due to thermal cyclic loading.


2016 ◽  
Vol 2016 (0) ◽  
pp. J2210203
Author(s):  
Shunsuke KANETSUKI ◽  
Koichi KUWAHARA ◽  
Shoichi EGAWA ◽  
Kento YAMAMOTO ◽  
Takahiro NAMAZU
Keyword(s):  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guisheng Gan ◽  
Donghua Yang ◽  
Yi-ping Wu ◽  
Xin Liu ◽  
Pengfei Sun ◽  
...  

Purpose The impact strength of solder joint under high strain rate was evaluated by board level test method. However, the impact shear test of single solder bump was more convenient and economical than the board level test method. With the miniaturization of solder joints, solder joints were more prone to failure under thermal shock and more attention has been paid to the impact reliability of solder joint. But Pb-free solder joints may be paid too much attention and Sn-Pb solder joints may be ignored. Design/methodology/approach In this study, thermal shock test between −55°C and 125°C was conducted on Sn-37Pb solder bumps in the BGA package to investigate microstructural evolution and growth mechanism of interfacial intermetallic compounds (IMCs) layer. The effects of thermal shock and ball diameter on the mechanical property and fracture behavior of Sn-37Pb solder bumps were discussed. Findings With the increase of ball size, the same change tendency of shear strength with thermal shock cycles. The shear strength of the solder bumps was the highest after reflow; with the increase of the number of thermal shocks, the shear strength of the solder bumps was decreased. But at the time of 2,000 cycles, the shear strength was increased to the initial strength. Minimum shear strength almost took place at 1,500 cycles in all solder bumps. The differences between maximum shear strength and minimum shear strength were 9.11 MPa and 16.83 MPa, 17.07 MPa and 15.59 MPa in φ0.3 mm and φ0.4 mm, φ0.5 mm and φ0.6 mm, respectively, differences were increased with increasing of ball size. With similar reflow profile, the thickness of IMC decreased as the diameter of the ball increased. The thickness of IMC was 2.42 µm and 2.17 µm, 1.63 µm and 1.77 µm with increasing of the ball size, respectively. Originality/value Pb-free solder was gradually used to replace traditional Sn-Pb solder and has been widely used in industry. Nevertheless, some products inevitably used a mixture of Sn-Pb and Pb-free solder to make the transition from Sn-Pb to Pb-free solder. Therefore, it was very important to understand the reliability of Sn-Pb solder joint and more further research works were also needed.


2016 ◽  
Vol 6 (6) ◽  
pp. 20160052 ◽  
Author(s):  
Gabriele Barrera ◽  
Loredana Serpe ◽  
Federica Celegato ◽  
Marco Coїsson ◽  
Katia Martina ◽  
...  

A nanofabrication technique based on self-assembling of polystyrene nanospheres is used to obtain magnetic Ni 80 Fe 20 nanoparticles with a disc shape. The free-standing nanodiscs (NDs) have diameter and thickness of about 630 nm and 30 nm, respectively. The versatility of fabrication technique allows one to cover the ND surface with a protective gold layer with a thickness of about 5 nm. Magnetization reversal has been studied by room-temperature hysteresis loop measurements in water-dispersed free-standing NDs. The reversal shows zero remanence, high susceptibility and nucleation/annihilation fields due to spin vortex formation. In order to investigate their potential use in biomedical applications, the effect of NDs coated with or without the protective gold layer on cell growth has been evaluated. A successful attempt to bind cysteine-fluorescein isothiocyanate (FITC) derivative to the gold surface of magnetic NDs has been exploited to verify the intracellular uptake of the NDs by cytofluorimetric analysis using the FITC conjugate.


Author(s):  
Hiroyuki Tsuritani ◽  
Toshihiko Sayama ◽  
Yoshiyuki Okamoto ◽  
Takeshi Takayanagi ◽  
Kentaro Uesugi ◽  
...  

An X-ray micro-tomography system called SP-μCT, which has a spatial resolution of 1 μm, has been developed in SPring-8, the largest synchrotron radiation facility in Japan. In this work, SP-μCT was applied to the nondestructive evaluation of micro-crack propagation appearing as thermal fatigue damage in lead-free solder joints. The observed specimens include two typical micro-joint structures by Sn-3.0wt%Ag-0.5wt%Cu lead-free solder. The first is an FBGA (Fine pitch Ball Grid Array) joint specimen in which an LSI package is connected to a substrate by solder bumps 360 μm in diameter, while the second is a chip joint specimen in which chip type resistors 1.6 mm in length and 0.8 mm. in width are mounted on a substrate. A thermal cycle test was carried out, and the specimens were picked up at fixed cycle numbers. The same solder joints were observed repeatedly using SP-μCT at beamline BL20XU in SPring-8. An X-ray energy of 29.0 keV was selected to obtain CT (Computed Tomography) images with high contrast among some components, and a refraction-contrast imaging technique was also applied to the visualization of fatigue cracks in the solder joints. In the FBGA type specimens, fatigue cracks appeared at the periphery of the interfaces between the solder and the UBM (Under Bump Metallization) on the LSI package. As the thermal cycle proceeds, the cracks propagate gradually to the inner region of the solder bumps in the vicinity of the interface. On the basis of the three-dimensional crack images, the fatigue crack propagation lifetime was accurately estimated by means of the average crack propagation rate. On the other hand, in the chip joint specimens, fatigue cracks appeared and propagated through the thin solder layer between the chip and substrate. In contrast to the FBGA specimen, many small voids roughly 5 to 10 μm in length were formed in the solder layer. The important observed fact is that these voids deform and connect to each other due to the thermal cyclic loading prior to crack propagation. Consequently, the obtained CT images clearly show the process of crack propagation due to the thermal cyclic loading of the same solder joint. In contrast, such information has not been obtained, whatsoever by industrially employed X-ray CT systems.


2004 ◽  
Vol 126 (4) ◽  
pp. 541-545 ◽  
Author(s):  
Y. C. Chan ◽  
M. O. Alam ◽  
K. C. Hung ◽  
H. Lu ◽  
C. Bailey

The application of underfill materials to fill up the room between the chip and substrate is known to substantially improve the thermal fatigue life of flip chip solder joints. Nowadays, no-flow underfill materials are gaining much interest over traditional underfill as the application and curing of this type of underfill can be undertaken before and during the reflow process and thus aiding high volume throughput. However, there is always a potential chance of entrapping no-flow underfill in the solder joints. This work, attempts to find out the extent of underfill entrapment in the solder joints and its reliability effect on the flip chip packages. Some unavoidable underfill entrapments at the edges of the joint between solder bumps and substrate pads are found for certain solder joints whatever bonding conditions are applied. It is interesting to report for the first time that partial underfill entrapment at the edges of the solder joint seems to have no adverse effect on the fatigue lifetime of the samples since most of the first solder joint failure in the no-flow flip chip samples during thermal cycling are not at the site of solder interconnection with underfill entrapment. Our modeling results show good agreement with the experiment that shows underfill entrapment can actually increase the fatigue lifetime of the no-flow flip chip package.


Sign in / Sign up

Export Citation Format

Share Document