scholarly journals Fructose Enhanced Reduction of Bacterial Growth on Nanorough Surfaces

2013 ◽  
Vol 1498 ◽  
pp. 73-78 ◽  
Author(s):  
N. Gozde Durmus ◽  
Erik N. Taylor ◽  
Kim M. Kummer ◽  
Thomas J. Webster

ABSTRACTBiofilms are a major source of medical device-associated infections, due to their persistent growth and antibiotic resistance. Recent studies have shown that engineering surface nanoroughness has great potential to create antibacterial surfaces. In addition, stimulation of bacterial metabolism increases the efficacy of antibacterial agents to eradicate biofilms. In this study, we combined the antibacterial effects of nanorough topographies with metabolic stimulation (i.e., fructose metabolites) to further decrease bacterial growth on polyvinyl chloride (PVC) surfaces, without using antibiotics. We showed for the first time that the presence of fructose on nanorough PVC surfaces decreased planktonic bacteria growth and biofilm formation after 24 hours. Most importantly, a 60% decrease was observed on nanorough PVC surfaces soaked in a 10 mM fructose solution compared to conventional PVC surfaces. In this manner, this study demonstrated that bacteria growth can be significantly decreased through the combined use of fructose and nanorough surfaces and thus should be further studied for a wide range of antibacterial applications.

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5391
Author(s):  
Marija Djošić ◽  
Ana Janković ◽  
Vesna Mišković-Stanković

Current trends in biomaterials science address the issue of integrating artificial materials as orthopedic or dental implants with biological materials, e.g., patients’ bone tissue. Problems arise due to the simple fact that any surface that promotes biointegration and facilitates osteointegration may also provide a good platform for the rapid growth of bacterial colonies. Infected implant surfaces easily lead to biofilm formation that poses a major healthcare concern since it could have destructive effects and ultimately endanger the patients’ life. As of late, research has centered on designing coatings that would eliminate possible infection but neglected to aid bone mineralization. Other strategies yielded surfaces that could promote osseointegration but failed to prevent microbial susceptibility. Needless to say, in order to assure prolonged implant functionality, both coating functions are indispensable and should be addressed simultaneously. This review summarizes progress in designing multifunctional implant coatings that serve as carriers of antibacterial agents with the primary intention of inhibiting bacterial growth on the implant-tissue interface, while still promoting osseointegration.


2015 ◽  
Vol 10 (11) ◽  
pp. 1934578X1501001 ◽  
Author(s):  
Clara Lia Costa Brandelli ◽  
Vanessa Bley Ribeiro ◽  
Karine Rigon Zimmer ◽  
Afonso Luís Barth ◽  
Tiana Tasca ◽  
...  

The traditional use of medicinal plants for treatment of infectious diseases by an indigenous Mbyá-Guarani tribe from South Brazil was assessed by evaluating the antibiotic and antibiofilm activities against relevant bacterial pathogens. Aqueous extracts from 10 medicinal plants were prepared according to indigenous Mbyá-Guarani traditional uses. To evaluate antibiotic (OD600) and antibiofilm (crystal violet method) activities, Pseudomonas aeruginosa ATCC 27853, Staphylococcus epidermidis ATCC 35984 and seven multi-drug resistant Klebsiella pneumoniae carbapenemase (KPC)-producing bacterial clinical isolates were challenged with the extracts. Furthermore, the susceptibility profile of KPC-producing bacteria and the ability of these isolates to form biofilm were evaluated. The plants Campomanesia xanthocarpa, Maytenus ilicifolia, Bidens pilosa and Verbena sp. showed the best activity against bacterial growth and biofilm formation. The majority of KPC-producing isolates, which showed strong ability to form biofilm and a multidrug resistance profile, was inhibited by more than 50% by some extracts. The Enterobacter cloacae (KPC 05) clinical isolate was the only one resistant to all extracts. This study confirms the importance of indigenous traditional medicinal knowledge and describes for the first time the ability of these plants to inhibit biofilm formation and/or bacterial growth of multi-drug resistant KPC-producing isolates.


Author(s):  
Jacky Lu ◽  
Miriam A. Guevara ◽  
Jamisha D. Francis ◽  
Sabrina K. Spicer ◽  
Rebecca E. Moore ◽  
...  

Group B Streptococcus (GBS) is one of the leading infection-related causes of adverse maternal and neonatal outcomes. This includes chorioamnionitis, which leads to preterm ruptures of membranes and can ultimately result in preterm or stillbirth. Infection can also lead to maternal and neonatal sepsis that may contribute to mortality. Currently, treatment for GBS infection include a bolus of intrapartum antibiotic prophylaxis to mothers testing positive for GBS colonization during late pregnancy. Lactoferrin is an antimicrobial peptide expressed in human breast milk, mucosal epithelia, and secondary granules of neutrophils. We previously demonstrated that lactoferrin possesses antimicrobial and antibiofilm properties against several strains of GBS. This is largely due to the ability of lactoferrin to bind and sequester iron. We expanded upon that study by assessing the effects of purified human breast milk lactoferrin against a panel of phenotypically and genetically diverse isolates of GBS. Of the 25 GBS isolates screened, lactoferrin reduced bacterial growth in 14 and biofilm formation in 21 strains. Stratifying the data, we observed that colonizing strains were more susceptible to the growth inhibition activity of lactoferrin than invasive isolates at lactoferrin concentrations between 250-750 µg/mL. Treatment with 750 µg/mL of lactoferrin resulted in differences in bacterial growth and biofilm formation between discrete sequence types. Differences in bacterial growth were also observed between capsular serotypes 1a and III. Maternally isolated strains were more susceptible to lactoferrin with respect to bacterial growth, but not biofilm formation, compared to neonatal sepsis isolates. Finally, high biofilm forming GBS strains were more impacted by lactoferrin across all isolates tested. Taken together, this study demonstrates that lactoferrin possesses antimicrobial and antibiofilm properties against a wide range of GBS isolates, with maternally isolated colonizing strains being the most susceptible.


2016 ◽  
Vol 54 (4) ◽  
pp. 323-328
Author(s):  
R. Jain ◽  
T. Lee ◽  
T. Hardcastle ◽  
K. Biswas ◽  
F. Radcliff ◽  
...  

Introduction: Biofilms have been implicated in chronic rhinosinusitis (CRS) and may explain the limited efficacy of antibiotics. There is a need to find more effective, non-antibiotic based therapies for CRS. This study examines the effects of xylitol on CRS biofilms and planktonic bacteria. Methods: Crystal violet assay and spectrophotometry were used to quantify the effects of xylitol (5% and 10% solutions) against Staphylococcus epidermidis, Pseudomonas aeruginosa, and Staphylococcus aureus. The disruption of established biofilms, inhibition of biofilm formation and effects on planktonic bacteria growth were investigated and compared to saline and no treatment. Results: Xylitol 5% and 10% significantly reduced biofilm biomass (S. epidermidis), inhibited biofilm formation (S. aureus and P. aeruginosa) and reduced growth of planktonic bacteria (S. epidermidis, S. aureus, and P. aeruginosa). Xylitol 5% inhibited formation of S. epidermidis biofilms more effectively than xylitol 10%. Xylitol 10% reduced S. epidermidis planktonic bacteria more effectively than xylitol 5%. Saline, xylitol 5% and 10% disrupted established biofilms of S. aureus when compared with no treatment. No solution was effective against established P. aeruginosa biofilm. Conclusions: Xylitol has variable activity against biofilms and planktonic bacteria in vitro and may have therapeutic efficacy in the management of CRS.


2012 ◽  
Vol 1417 ◽  
Author(s):  
George E. Aninwene ◽  
Erik Taylor ◽  
Douglas Hall ◽  
Amy Mei ◽  
Gregory D. Jay ◽  
...  

ABSTRACTYearly, there are over six million cataract surgeries worldwide that involve intraocular lenses (IOLs) [1]. However, preventing post-operative biofouling of these lenses remains a challenge. One major complication is post-operative bacterial infection [2]. Surface modification of IOLs may provide a solution. This study proposes the use of the anti-adhesive protein lubricin (LUB), a glycoprotein found in the synovial fluid, as a means to make polymer surfaces less prone to bacterial adhesion and proliferation, thus reducing the opportunity for post-operative infection [3]. This study used extended bacteria growth trials in the presence of lubricin, vitronectin, and mucin to investigate how lubricin and protein sub-regions of lubricin reduce bacterial functions. This study showed for the first time that polymer surface coatings of lubricin and vitronectin significantly reduce Staphylococcus aureus growth over the course of 15 hours, while mucin was only able to delay the start of the Staphylococcus aureus exponential growth phase and retard proliferation. In solution, both lubricin and mucin significantly reduce bacterial proliferation. Thus, the results of this study demonstrated that lubricin and its sub-regions mucin and vitronectin should be studied for a wide range of antibacterial applications.


2021 ◽  
Author(s):  
Kexin Liu ◽  
Shuang Tan ◽  
Weiyuan Ye ◽  
Limin Hou ◽  
Binghu Fang

Abstract Background: Klebsiella pneumoniae is widely distributed in water and plays a major role in both human and animal infections. Many K. pneumoniae strains form biofilms on various surfaces, enhancing their pathogenicity and resistance to antibiotics. New ways of inhibiting biofilm formation are needed. Iron is vital to the growth of microorganisms and the formation of biofilms due to its participation in various metabolic processes and its roles as an enzyme and protein cofactor. It is also present in groundwater. The aim of this study was to examine the effects of iron on K. pneumoniae biofilm formation and any associated metabolic changes.Results: Biofilm formation was enhanced to the greatest extent by the presence of 0.16 mM FeCl2, producing a denser structure under electron microscopy. The number of biofilm-forming and planktonic bacteria did not change, but protein and polysaccharide concentrations in the bacterial extracellular polymeric substances (EPS) were significantly increased by iron supplementation. To clarify this mechanism, intracellular metabolomic analysis was carried out, showing that the differential, down-regulated metabolites included succinic acid. Addition of succinic acid counteracted the biofilm-forming effect of iron, with no bactericidal side effects.Conclusion: This study demonstrates the importance of succinic acid and iron in Klebsiella pneumoniae biofilms, and provides insight into the formation of K. pneumoniae biofilms and direction for the development of new antibacterial agents.


2020 ◽  
Author(s):  
Eleonora Diamanti ◽  
Inda Setyawati ◽  
Spyridon Bousis ◽  
leticia mojas ◽  
lotteke Swier ◽  
...  

Here, we report on the virtual screening, design, synthesis and structure–activity relationships (SARs) of the first class of selective, antibacterial agents against the energy-coupling factor (ECF) transporters. The ECF transporters are a family of transmembrane proteins involved in the uptake of vitamins in a wide range of bacteria. Inhibition of the activity of these proteins could reduce the viability of pathogens that depend on vitamin uptake. Because of their central role in the metabolism of bacteria and their absence in humans, ECF transporters are novel potential antimicrobial targets to tackle infection. The hit compound’s metabolic and plasma stability, the potency (20, MIC Streptococcus pneumoniae = 2 µg/mL), the absence of cytotoxicity and a lack of resistance development under the conditions tested here suggest that this scaffold may represent a promising starting point for the development of novel antimicrobial agents with an unprecedented mechanism of action.<br>


2020 ◽  
pp. 63-72
Author(s):  
Yu. Olefir ◽  
E. Sakanyan ◽  
I. Osipova ◽  
V. Dobrynin ◽  
M. Smirnova ◽  
...  

The entry of a wide range of biotechnological products into the pharmaceutical market calls for rein-forcement of the quality, efficacy and safety standards at the state level. The following general monographs have been elaborated for the first time to be included into the State Pharmacopoeia of the Russian Federation, XIV edition: "Viral safety" and "Reduction of the risk of transmitting animal spongiform encephalopathy via medicinal products". These general monographs were elaborated taking into account the requirements of foreign pharmacopoeias and the WHO recommendations. The present paper summarises the key aspects of the monographs.


Author(s):  
Petros Bouras-Vallianatos

Byzantine medicine is still a little-known and misrepresented field not only in the wider arena of debates on medieval medicine but also among Byzantinists. Byzantine medical literature is often viewed as ‘stagnant’ and mainly preserving ancient ideas; and our knowledge of it continues to be based to a great extent on the comments of earlier authorities, which are often repeated uncritically. This book presents the first comprehensive examination of the medical corpus of, arguably, the most important late Byzantine physician John Zacharias Aktouarios (c.1275–c.1330). The main thesis is that John’s medical works show an astonishing degree of openness to knowledge from outside Byzantium combined with a significant degree of originality, in particular, in the fields of uroscopy, pharmacology, and human physiology. The analysis of John’s edited (On Urines and On Psychic Pneuma) and unedited (Medical Epitome) works is supported for the first time by the consultation of a large number of manuscripts. The study is also informed by evidence from a wide range of medical sources, including previously unpublished ones, and texts from other genres, such as epistolography and merchants’ accounts. The contextualization of John’s works sheds new light on the development of Byzantine medical thought and practice, and enhances our understanding of the late Byzantine social and intellectual landscape. Finally, John’s medical observations are also examined in the light of examples from the medieval Latin and Islamic worlds, placing his medical theories in the wider Mediterranean milieu and highlighting the cultural exchange between Byzantium and its neighbours.


Author(s):  
Noel Malcolm

This book of essays covers a wide range of topics in the history of Albania and Kosovo. Many of the essays illuminate connections between the Albanian lands and external powers and interests, whether political, military, diplomatic or religious. Such topics include the Habsburg invasion of Kosovo in 1689, the manoeuvrings of Britain and France towards the Albanian lands during the Napoleonic Wars, the British interest in those lands in the late nineteenth century, and the Balkan War of 1912. On the religious side, essays examine ‘crypto-Christianity’ in Kosovo during the Ottoman period, the stories of conversion to Islam revealed by Inquisition records, the first theological treatise written in Albanian (1685), and the work of the ‘Apostolic Delegate’ who reformed the Catholic Church in early twentieth-century Albania. Some essays bring to life ordinary individuals hitherto unknown to history: women hauled before the Inquisition, for example, or the author of the first Albanian autobiography. The longest essay, on Ali Pasha, tells for the first time the full story of the role he played in the international politics of the Napoleonic Wars. Some of these studies have been printed before (several in hard-to-find publications, and one only in Albanian), but the greater part of this book appears here for the first time. This is not only a contribution to Albanian and Balkan history it also engages with many broader issues, including religious conversion, methods of enslavement within the Ottoman Empire, and the nature of modern myth-making about national identity.


Sign in / Sign up

Export Citation Format

Share Document