Study of a Cu-Al-Mn Shape Memory Alloy Produced by Plasma Melting Followed by Injection Molding

2014 ◽  
Vol 1611 ◽  
pp. 25-30
Author(s):  
Francisco Fernando Roberto Pereira ◽  
Maria Goretti Ferreira Coutinho ◽  
Bruno Moura Miranda ◽  
Carlos José de Araújo

ABSTRACTShape Memory Alloys (SMA) are characterized by the capacity to recover a permanent deformation after being heated above a critical temperature called Final Austenite Temperature (Af). The Ni-Ti SMA are the most commercially used, however recent studies showed that the Cu-Al-Mn SMA present significant shape recovery and mechanical properties, showing a strong potential for developing new applications. In this context, the main goal of this work is to manufacture a Cu-Al-Mn SMA through a plasma melting process followed by injection molding of liquid metal and then characterize the samples, using the following techniques: Optical Microscopy (OM), Differential Scanning Calorimetry (DSC), Electrical Resistance as a function of Temperature (ERT) tests, Dynamical Mechanical Analysis (DMA) and Microhardness (MH).

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1928
Author(s):  
Katalin Czifrák ◽  
Csilla Lakatos ◽  
Marcell Árpád Kordován ◽  
Lajos Nagy ◽  
Lajos Daróczi ◽  
...  

In this report, the synthesis of poly(ω-pentadecalactone) (PPDL) (co)polymers and their incorporation into polyurethanes (PUs) are reported. Optimal conditions for the ring-opening polymerization (ROP) of ω-pentadecalactone (PDL) using dibutyltin dilaurate catalyst were established. For the synthesis of linear and crosslinked PUs, 50 kDa poly(ε-caprolactone) (PCL) and 1,6-hexamethylenediisocyanate (HDI) were used. The obtained polyurethanes were characterized by Attenuated Total Reflectance Fourier-Transform Infrared spectroscopy (AT-FTIR), differential scanning calorimetry (DSC), and dynamical mechanical analysis (DMA). The DMA of the selected sample showed a rubbery plateau on the storage modulus versus temperature curve predicting shape memory behavior. Indeed, good shape memory performances were obtained with shape fixity (Rf) and shape recovery (Rr) ratios.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 542 ◽  
Author(s):  
David Santiago ◽  
Dailyn Guzmán ◽  
Francesc Ferrando ◽  
Àngels Serra ◽  
Silvia De la Flor

A series of bio-based epoxy shape-memory thermosetting polymers were synthesized starting from a triglycidyl phloroglucinol (3EPOPh) and trimethylolpropane triglycidyl ether (TPTE) as epoxy monomers and a polyetheramine (JEF) as crosslinking agent. The evolution of the curing process was studied by differential scanning calorimetry (DSC) and the materials obtained were characterized by means of DSC, thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), stress-strain tests, and microindentation. Shape-memory properties were evaluated under free and totally constrained conditions. All results were compared with an industrial epoxy thermoset prepared from standard diglycidyl ether of Bisphenol A (DGEBA). Results revealed that materials prepared from 3EPOPh were more reactive and showed a tighter network with higher crosslinking density and glass transition temperatures than the prepared from DGEBA. The partial substitution of 3EPOPh by TPTE as epoxy comonomer caused an increase in the molecular mobility of the materials but without worsening the thermal stability. The shape-memory polymers (SMPs) prepared from 3EPOPh showed good mechanical properties as well as an excellent shape-memory performance. They showed almost complete shape-recovery and shape-fixation, fast shape-recovery rates, and recovery stress up to 7 MPa. The results obtained in this study allow us to conclude that the triglycidyl phloroglucinol derivative of eugenol is a safe and environmentally friendly alternative to DGEBA for preparing thermosetting shape-memory polymers.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4203
Author(s):  
Avraham I. Bram ◽  
Irina Gouzman ◽  
Asaf Bolker ◽  
Noam Eliaz ◽  
Ronen Verker

Thermally activated shape memory polymers (SMPs) can memorize a temporary shape at low temperature and return to their permanent shape at higher temperature. These materials can be used for light and compact space deployment mechanisms. The control of transition temperature and thermomechanical properties of epoxy-based SMPs can be done using functionalized polyhedral oligomeric silsesquioxane (POSS) additives, which are also known to improve the durability to atomic oxygen in the space environment. In this study, the influence of varying amounts of two types of POSS added to epoxy-based SMPs on the shape memory effect (SME) were studied. The first type contained amine groups, whereas the second type contained epoxide groups. The curing conditions were defined using differential scanning calorimetry and glass transition temperature (Tg) measurements. Thermomechanical and SME properties were characterized using dynamic mechanical analysis. It was found that SMPs containing amine-based POSS show higher Tg, better shape fixity and faster recovery speed, while SMPs containing epoxide-based POSS have higher crosslinking density and show superior thermomechanical properties above Tg. This work demonstrates how the Tg and SME of SMPs can be controlled by the type and amount of POSS in an epoxy-based SMP nanocomposite for future space applications.


2018 ◽  
Vol 89 (6) ◽  
pp. 1027-1037 ◽  
Author(s):  
Míriam Sáenz-Pérez ◽  
Tariq Bashir ◽  
José Manuel Laza ◽  
Jorge García-Barrasa ◽  
José Luis Vilas ◽  
...  

In this work, thermoresponsive shape-memory polyurethane (SMPU) fibers were produced by melt spinning from different SMPU pellets. Afterwards, the knitted fabric samples were prepared by the obtained fibers. Some of the SMPUs used were synthesized previously in our laboratory whereas a commercial one, named DIAPLEX MM4520, was also evaluated in order to carry out comparative studies. All the SMPUs were characterized by different techniques, such as thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis and tensile testing. Moreover, the shape-memory capabilities of the fabrics were measured by thermo-mechanical analysis. The obtained results show that the synthesized SMPUs could be attractive candidates for potential applications such as breathable fabrics or moisture-management textiles.


Author(s):  
Haibao Lu ◽  
Yong Tang ◽  
Jihua Gou ◽  
Erin Chow ◽  
Jinsong Leng ◽  
...  

To electrically activate the shape recovery in a styrene-based shape-memory polymer (SMP) by coating with conductive carbon nanofiber paper has been demonstrated in this paper. Carbon nanofibers in the form of paper sheet in combination with SMP significantly improve the electrical and thermal conductivity of polymer, leading to the actuation of SMP/nanopaper composite (with 15% volume fraction of carbon nanopaper, dimension of 10.0 cm × 0.5 cm × 0.3 cm) can be carried out by applying 8.4 V voltage, with response time of 140 s. Therefore, electrical conductivity of 6.6 S/cm is obtained. This approach, although demonstrated in styrene-based polymer, is applicable to other type of SMP materials. Furthermore, the morphologies of carbon nanofiber in the form of paper is observed by scanning electron microscopy, and the thermomechanical properties of composites are measured and analyzed by dynamic mechanical analysis.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1440 ◽  
Author(s):  
Juan P. Correa-Aguirre ◽  
Fernando Luna-Vera ◽  
Carolina Caicedo ◽  
Bairo Vera-Mondragón ◽  
Miguel A. Hidalgo-Salazar

This study explores the reprocessing behavior of polypropylene-sugarcane bagasse biocomposites using neat and chemically treated bagasse fibers (20 wt.%). Biocomposites were reprocessed 5 times using the extrusion process followed by injection molding. The mechanical properties indicate that microfibers bagasse fibers addition and chemical treatments generate improvements in the mechanical properties, reaching the highest performance in the third cycle where the flexural modulus and flexural strength increase 57 and 12% in comparison with neat PP. differential scanning calorimetry (DSC) and TGA characterization show that bagasse fibers addition increases the crystallization temperature and thermal stability of the biocomposites 7 and 39 °C respectively, without disturbing the melting process of the PP phase for all extrusion cycles. The rheological test shows that viscosity values of PP and biocomposites decrease progressively with extrusion cycles; however, Cole–Cole plots, dynamic mechanical analysis (DMA), width at half maximum of tan delta peaks and SEM micrographs show that chemical treatments and reprocessing could improve fiber dispersion and fiber–matrix interaction. Based on these results, it can be concluded that recycling potential of polypropylene-sugarcane bagasse biocomposites is huge due to their mechanical, thermal and rheological performance resulting in advantages in terms of sustainability and life cycle impact of these materials.


2012 ◽  
Vol 476-478 ◽  
pp. 2227-2230
Author(s):  
He Sun ◽  
Yu Yan Liu ◽  
Hui Feng Tan ◽  
Chang Guo Wang

In this paper, a various shape-memory materials had been prepared by two-stage curing method. The purpose of using this approach was to maintain the excellent shape memory properties and low glass transition temperature (Tg) of shape-memory materials after first stage curing, furthermore, improve the Tg and heat resistence effectively after second stage curing. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and fold-deploy shape memory tests were used to characterize the feasibility of two-stage curing, thermodynamics properties and shape memory performance of these polymers. DSC results showed that two different curing stages could be achieved successfully, DMA results suggested that heat resistance of materials had been improved after second curing stage, while the fold-deploy shape memory tests proved that the composites possessed excellent shape memory properties, it could be deformed into different shape and recovered its original shape fully within three minutes.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 225 ◽  
Author(s):  
Arvind Gupta ◽  
Beom Soo Kim

The distinctive ability to remember their original form after partial or complete deformation makes shape memory polymers remarkable materials for several engineering and biomedical applications. In the present work, the development of a polycaprolactone based toughened shape memory polyurethane biocomposite promoted by in situ incorporation of chitosan flakes has been demonstrated. The chitosan flakes were homogeneously present in the polymer matrix in the form of nanoflakes, as confirmed by the electron microscopic analysis and probably developed a crosslinked node that promoted toughness (a > 500% elongation at break) and led to a ~130% increment in ultimate tensile strength, as analyzed using a universal testing machine. During a tensile pull, X-ray analysis revealed the development of crystallites, which resulted from a stress induced crystallization process that may retain the shape and melting of the crystallites stimulating shape recovery (with a ~100% shape recovery ratio), even after permanent deformation. The biodegradable polyurethane biocomposite also demonstrates relatively high thermal stability (Tmax at ~360 °C). The prepared material possesses a unique shape memory behavior, even after permanent deformation up to a > 500% strain, which may have great potential in several biomedical applications.


2014 ◽  
Vol 1611 ◽  
pp. 31-36 ◽  
Author(s):  
Jackson de Brito Simões ◽  
Francisco Fernando Roberto Pereira ◽  
Jorge Otubo ◽  
Carlos José de Araújo

ABSTRACTShape Memory Alloys (SMA) metallic materials that change their mechanical and physical properties with temperature variation and mechanical loading, surprising engineers and researchers. In this way, one can develop thermomechanical actuators capable, for example, of generating force by blocking the shape recovery or change the natural frequency of a mechanical system by blocking resonance. The processing of these SMA are countless, each one with its specific limitation and particularity. This study aims to evaluate the influence of rapid solidification of a Ni-Ti SMA that is originally manufactured by Vacuum Induction Melting (VIM) and reprocessed by Plasma Melting (PM) followed by injection molding into different metal molds (steel, brass, aluminum and copper). The influence of such a processing is analyzed through Differential Scanning Calorimetry (DSC) and Electrical Resistance as a function of Temperature (ERT) to determine the effects on transformation temperatures. The results demonstrate that by using the copper mold one can provide greater uniformity of the material properties. Thus, there is the possibility of obtaining different kinds of SMA mini-actuators by PM injection in a copper mold and that includes different shapes and sizes that can be studied further.


Sign in / Sign up

Export Citation Format

Share Document