Initial Growth Behavior of Ultra-Thin c-Axis-Oriented Epitaxial SrBi2Ta2O9 films on SrTuO3

2005 ◽  
Vol 902 ◽  
Author(s):  
Kenji Takahashi ◽  
Muneyasu Suzuki ◽  
Mamoru Yoshimoto ◽  
Hiroshi Funakubo

Abstractc-axis-oriented epitaxial SrBi2Ta2O9 ultra-thin films were grown by pulse-gas-introduced metalorganic chemical vapor deposition (pulsed-MOCVD) on (100)SrTiO3 single crystal substrates with atomic scale step structure and their growth behavior was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Minimum growth unit was found to be “ghalf-unit-cell” of SrBi2Ta2O9. Height of steps and width of terraces observed at SrBi2Ta2O9 film surface were in good agreement with those at SrTiO3 substrate surface. This shape transfer was induced by lattice displacement of SrBi2Ta2O9 along c-direction formed at atomic step on SrTiO3 substrate. In-plane growth of half-unit-cell SrBi2Ta2O9 2D-islands striding across the step walls was observed. It was considered to be a special phenomenon for c-axis-oriented films of layer-structured compounds due to their large crystal anisotropy and/or several times larger half-unit-cell height than single step one of SrTiO3.

2008 ◽  
Vol 1068 ◽  
Author(s):  
Yoosuf N. Picard ◽  
Christopher Locke ◽  
Christopher L. Frewin ◽  
Rachael L. Myers-Ward ◽  
Joshua D. Caldwell ◽  
...  

ABSTRACTThe electron channeling contrast imaging (ECCI) technique was utilized to investigate atomic step morphologies and dislocation densities in 3C-SiC films grown by chemical vapor deposition (CVD) on Si (001) substrates. ECCI in this study was performed inside a commercial scanning electron microscope using an electron backscatter diffraction (EBSD) system equipped with forescatter diode detectors. This approach allowed simultaneous imaging of atomic steps, verified by atomic force microscopy, and dislocations at the film surface. EBSD analysis verified the orientation and monocrystalline quality of the 3C-SiC films. Dislocation densities in 3C-SiC films were measured locally using ECCI, with qualitative verification by x-ray diffraction. Differences in the dislocation density across a 50 mm diameter 3C-SiC film could be attributed to subtle variations during the carbonization process across the substrate surface.


2014 ◽  
Vol 936 ◽  
pp. 264-268
Author(s):  
Hua Cheng ◽  
Yong Chan Qian ◽  
Jun Xue

Microcrystalline Si films were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) using Ar diluted SiH4gaseous mixture. The effects of the substrate on deposition rate, preferred orientation and roughness of the films were investigated. The results show that, the influence of the substrate surface chemical nature on the deposition rate is significant in the initial stage of the growth. And considering the crystallinity and roughness of the films, the substrate is favored in its preferred orientation with a rougher surface. Based on these results, it is confirmed that the combination of diffusion and etching is indispensable to describe the deposition of μc-Si with SiH4diluted by Ar, and the mechanism of μc-Si growth could be controlled by diffusion of Si and etching of the Ar+on the film surface.


1993 ◽  
Vol 8 (9) ◽  
pp. 2239-2244 ◽  
Author(s):  
K. Glejb⊘l ◽  
N.H. Pryds ◽  
A.R. Thölén

Using Chemical Vapor Deposition (CVD), TiN was deposited on sharp tungsten needles. The reactant gases were TiCl4, N2, and H2. A Transmission Electron Microscopy (TEM) investigation revealed that the first nuclei of the CVD–TiN coating on tungsten did not consist of δ–TiN, but were a mixture of α–TiN and δ–TiN. These results were also verified with x-ray measurements. From these experimental results a possible mechanism for the initial growth of TiN on tungsten is suggested. It may be that the change in relative concentrations of the different titanium nitrides suggested as mechanism of the initial growth of CVD–TiN can be applied in general for all TiCl4/H2/N2/metal systems where the original substrate surface material partly or completely consists of a metal with catalytic properties.


1996 ◽  
Vol 452 ◽  
Author(s):  
K. Ikuta ◽  
J. W. Park ◽  
L. H. Kuo ◽  
T. Yasuda ◽  
S. Yamasaki ◽  
...  

AbstractInitial growth processes of hydrogenated microcrystalline silicon (μc-Si:H) films have been investigated by scanning tunneling microscopy (STM), high-resolution transmission electron microscopy (HRTEM), and reflection high energy electron diffraction (RHEED). The μc-Si:H films were prepared by plasma enhanced chemical vapor deposition (PECVD) on H-terminated Si(111) and plasma-oxidized SiO2/Si(111) surfaces that were made atomically-flat by a careful wet processing. On H-terminated Si(111) the initial growth was epitaxial as evidenced by HRTEM and RHEED, while on SiO2/Si(111) the initial process was nucleation of amorphous Si followed by formation of randomly oriented μc-Si:H structure. STM observation revealed that, on both H-terminated and SiO2-terminated surfaces, initial growth processes proceed through the nucleation-and-coalescence mechanism.


2012 ◽  
Vol 24 (8) ◽  
pp. 1407-1414 ◽  
Author(s):  
Jeong Hwan Han ◽  
Sang Woon Lee ◽  
Seong Keun Kim ◽  
Sora Han ◽  
Woongkyu Lee ◽  
...  

Author(s):  
D.P. Malta ◽  
S.A. Willard ◽  
R.A. Rudder ◽  
G.C. Hudson ◽  
J.B. Posthill ◽  
...  

Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. A major goal of current device-related diamond research is to achieve a high quality epitaxial film on an inexpensive, readily available, non-native substrate. One step in the process of achieving this goal is understanding the nucleation and growth processes of diamond films on diamond substrates. Electron microscopy has already proven invaluable for assessing polycrystalline diamond films grown on nonnative surfaces.The quality of the grown diamond film depends on several factors, one of which is the quality of the diamond substrate. Substrates commercially available today have often been found to have scratched surfaces resulting from the polishing process (Fig. 1a). Electron beam-induced current (EBIC) imaging shows that electrically active sub-surface defects can be present to a large degree (Fig. 1c). Growth of homoepitaxial diamond films by rf plasma-enhanced chemical vapor deposition (PECVD) has been found to planarize the scratched substrate surface (Fig. 1b).


Author(s):  
Yoshichika Bando ◽  
Takahito Terashima ◽  
Kenji Iijima ◽  
Kazunuki Yamamoto ◽  
Kazuto Hirata ◽  
...  

The high quality thin films of high-Tc superconducting oxide are necessary for elucidating the superconducting mechanism and for device application. The recent trend in the preparation of high-Tc films has been toward “in-situ” growth of the superconducting phase at relatively low temperatures. The purpose of “in-situ” growth is to attain surface smoothness suitable for fabricating film devices but also to obtain high quality film. We present the investigation on the initial growth manner of YBCO by in-situ reflective high energy electron diffraction (RHEED) technique and on the structural and superconducting properties of the resulting ultrathin films below 100Å. The epitaxial films have been grown on (100) plane of MgO and SrTiO, heated below 650°C by activated reactive evaporation. The in-situ RHEED observation and the intensity measurement was carried out during deposition of YBCO on the substrate at 650°C. The deposition rate was 0.8Å/s. Fig. 1 shows the RHEED patterns at every stage of deposition of YBCO on MgO(100). All the patterns exhibit the sharp streaks, indicating that the film surface is atomically smooth and the growth manner is layer-by-layer.


Author(s):  
Jason R. Heffelfinger ◽  
C. Barry Carter

Yttria-stabilized zirconia (YSZ) is currently used in a variety of applications including oxygen sensors, fuel cells, coatings for semiconductor lasers, and buffer layers for high-temperature superconducting films. Thin films of YSZ have been grown by metal-organic chemical vapor deposition, electrochemical vapor deposition, pulse-laser deposition (PLD), electron-beam evaporation, and sputtering. In this investigation, PLD was used to grow thin films of YSZ on (100) MgO substrates. This system proves to be an interesting example of relationships between interfaces and extrinsic dislocations in thin films of YSZ.In this experiment, a freshly cleaved (100) MgO substrate surface was prepared for deposition by cleaving a lmm-thick slice from a single-crystal MgO cube. The YSZ target material which contained 10mol% yttria was prepared from powders and sintered to 85% of theoretical density. The laser system used for the depositions was a Lambda Physik 210i excimer laser operating with KrF (λ=248nm, 1Hz repetition rate, average energy per pulse of 100mJ).


2002 ◽  
Vol 716 ◽  
Author(s):  
Parag C. Waghmare ◽  
Samadhan B. Patil ◽  
Rajiv O. Dusane ◽  
V.Ramgopal Rao

AbstractTo extend the scaling limit of thermal SiO2, in the ultra thin regime when the direct tunneling current becomes significant, members of our group embarked on a program to explore the potential of silicon nitride as an alternative gate dielectric. Silicon nitride can be deposited using several CVD methods and its properties significantly depend on the method of deposition. Although these CVD methods can give good physical properties, the electrical properties of devices made with CVD silicon nitride show very poor performance related to very poor interface, poor stability, presence of large quantity of bulk traps and high gate leakage current. We have employed the rather newly developed Hot Wire Chemical Vapor Deposition (HWCVD) technique to develop the a:SiN:H material. From the results of large number of optimization experiments we propose the atomic hydrogen of the substrate surface prior to deposition to improve the quality of gate dielectric. Our preliminary results of these efforts show a five times improvement in the fixed charges and interface state density.


Sign in / Sign up

Export Citation Format

Share Document