Submicron/nano Grained Stainless Steel with Superior Mechanical Properties

2005 ◽  
Vol 903 ◽  
Author(s):  
Shreyas Rajasekhara ◽  
M. C. Somani ◽  
M. Koljonen ◽  
L. P. Karjalainen ◽  
A. Kyröläinen ◽  
...  

AbstractMetastable austenitic stainless steels may transform to martensite when subjected to cold rolling. Upon subsequent annealing the martensite reverts back to ultra-fine grained austenite. Based on this concept, nano/submicron austenitic grains have been produced in a 63% cold rolled commercial AISI 301LN subjected to annealing treatments at 600°C, 800°C and 1000°C for 1, 10 and 100 seconds.Transmission Electron Microscopy (TEM) observations show the formation of equiaxed austenitic grains as small as ∼ 200nm in samples annealed at 800°C, and a dramatic increase in grain size as the annealing temperature and duration is increased. Additional tensile tests indicate that samples annealed at 800°C for 1 second exhibit a yield strength of ∼ 740 MPa and an total elongation of ∼ 45%. This combination of strength and ductility is excellent exceeding those of conventionally annealed steels (σy=350 MPa; Ductility ∼ 40%) or cold-rolled steels (σy=650 MPa; Ductility ∼ 30%).Finally, a correlation between the observed grain sizes and mechanical properties, in particular the yield strength, is obtained. Preliminary analysis indicates that the Hall-Petch equation can satisfactorily relate the observed yield strength with corresponding grain sizes.

2018 ◽  
Vol 941 ◽  
pp. 790-795
Author(s):  
Rui Xiao Zheng ◽  
Ichiro Kawarada ◽  
Wu Gong ◽  
Akinobu Shibata ◽  
Hidetoshi Somekawa ◽  
...  

In this study, a Mg-0.3at.%Y alloy was provided for a severe plastic deformation by high pressure torsion (HPT) and subsequent annealing. After the HPT by 5 rotations, nanocrystalline structures with a mean grain size of 0.23 μm having deformed characteristics were obtained. Fully recrystallized microstructures with mean grain sizes ranging from 0.66 μm to 32.7 μm were obtained by subsequent annealing at various temperatures. Room temperature tensile tests revealed that ultrafine grained (UFG; grain sizes smaller than 1 μm) specimen exhibited very high yield strength over 250 MPa but limited ductility. In contrast, good balance of strength and ductility was realized in fine grained specimens with grain sizes around 2~5 μm. Particularly, the yield strength and total tensile elongation of a specimen with a mean grain size of 2.13 μm were 184 MPa and 37.1%, respectively, which were much higher than those of pure Mg having a similar grain size. The significant effects of grain size and Y addition on the mechanical properties were discussed.


2012 ◽  
Vol 715-716 ◽  
pp. 579-584 ◽  
Author(s):  
Dagoberto Brandao Santos ◽  
Berenice Mendonça Gonzalez ◽  
Elena V. Pereloma

ncreasing demand for automotive vehicles with reduced weight, improved crashworthiness and passengers safety has steamed the research of new Twinning Induced Plasticity (TWIP) steels. In this work the effect of annealing between 400 and 900°C on the microstructure and mechanical properties of hot and cold rolled 0.06C-24Mn-3Al-2Si-1Ni (wt%) steel with TWIP effect was investigated. The results have shown that steel exhibits fast recrystallization kinetics with a low amount of recovery, which results in a high driving force for the former. Mechanical properties were determined using Vickers microhardness and tensile tests. Tensile strength of 670 MPa with 54% of total elongation, and strain hardening exponent of 0.57 were reached after annealing at 900°C.


2013 ◽  
Vol 753 ◽  
pp. 518-521
Author(s):  
Rajib Saha ◽  
Rintaro Ueji ◽  
Nobuhiro Tsuji

A study has been carried out on the evolution of microstructure, grain boundary character and mechanical properties in a Twinning Induced Plasticity steel heavily cold rolled and subsequently annealed.The cold rolled mcrostructures showed fine lamellar boundaries with many shear bands.With progress of annealing, numerous numbers of recrystallized grains were generated.The fully recrystallized steel showed equi-axed nanocrystalline grains with a mean grain size of 400 nm that enhanced the yield strength significantly while retaining tensile ductility.


Author(s):  
Romaneh Jalilian ◽  
David Mudd ◽  
Neil Torrez ◽  
Jose Rivera ◽  
Mehdi M. Yazdanpanah ◽  
...  

Abstract The sample preparation for transmission electron microscope can be done using a method known as "lift-out". This paper demonstrates a method of using a silver-gallium nanoneedle array for a quicker sharpening process of tungsten probes with better sample viewing, covering the fabrication steps and performance of needle-tipped probes for lift-out process. First, an array of high aspect ratio silver-gallium nanoneedles was fabricated and coated to improve their conductivity and strength. Then, the nanoneedles were welded to a regular tungsten probe in the focused ion beam system at the desired angle, and used as a sharp probe for lift-out. The paper demonstrates the superior mechanical properties of crystalline silver-gallium metallic nanoneedles. Finally, a weldless lift-out process is described whereby a nano-fork gripper was fabricated by attaching two nanoneedles to a tungsten probe.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 654
Author(s):  
Ryosuke Matsutani ◽  
Nobuo Nakada ◽  
Susumu Onaka

Ultra-fine-grained (UFG) Cu shows little total elongation in tensile tests because simple shear deformation is concentrated in narrow regions during the initial stage of plastic deformation. Here, we attempted to improve the total elongation of UFG Cu obtained by equal-channel angular pressing. By making shallow dents on the side surfaces of the plate-like specimens, this induced pure shear deformation and increased their total elongation. During the tensile tests, we observed the overall and local deformation of the dented and undented UFG Cu specimens. Using three-dimensional digital image correlation, we found that the dented specimens showed suppression of thickness reduction and delay in fracture by enhancement of pure shear deformation. However, the dented and undented specimens had the same ultimate tensile strength. These results provide us a new concept to increase total elongation of UFG materials.


2021 ◽  
Vol 1026 ◽  
pp. 65-73
Author(s):  
Kai Zhu ◽  
Hong Wei Yan

Both microstructure inhomogeneity and mechanical property diversity along the thickness direction in rolled thick aluminum plates have been considered to have a remarkable impact on the performance and properties of the products made from the plates. In this study, scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) characterizations of microstructure and texture types along the thickness directions of Al7055 thick plate specimens prepared using two conditions, hot-rolling and solution-quenching, were performed. To examine the mechanical properties, uniaxial tensile tests were also carried out on specimens machined from both types of thick plates, using a layered strategy along the thickness direction. The results indicate that both the microstructure and mechanical properties are inhomogeneous under the two conditions. Furthermore, it is evident that there is a hereditary relationship between the mechanical properties of the two plates—areas with higher yield strength in the as-hot-rolled plate correspond to areas with the higher yield strength in the as-solution-quenched plate


2006 ◽  
Vol 503-504 ◽  
pp. 895-900 ◽  
Author(s):  
Tatsuya Morikawa ◽  
Taku Moronaga ◽  
Kenji Higashida

Fine-grained structures in Fe-36mass%Ni Invar alloy have been investigated by using transmission electron microscopy (TEM). Particular attention has been paid on the role of deformation twinning in the formation of fine-grained structures and its influence on tensile stressstrain behaviours of rolled specimens. In Fe-Ni Invar alloy with a moderate stacking fault energy, deformation twin did not appear in usual cold-rolling at room temperature (RT), where a kind of cell walls was formed and the Cu-type texture was observed. On the other hand, twinning was occurred by rolling when specimens were cooled to liquid nitrogen temperature (LNT) immediately before the rolling. In such case, a fine lamellar structure was developed and the brass-type texture appeared. However, the lamella boundaries did not coincide with any crystallographic planes, and they were intersected with the bands of deformation twin. Specimens rolled by 90% in thickness reduction exhibited tensile stressstrain behaviours similar to those observed in specimens with SPD structures. In particular, specimens rolled at LNT showed high yield strengths and non-uniform deformation.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 603
Author(s):  
Natalia Rońda ◽  
Krzysztof Grzelak ◽  
Marek Polański ◽  
Julita Dworecka-Wójcik

This work investigates the effect of layer thickness on the microstructure and mechanical properties of M300 maraging steel produced by Laser Engineered Net Shaping (LENS®) technique. The microstructure was characterized using light microscopy (LM) and scanning electron microscopy (SEM). The mechanical properties were characterized by tensile tests and microhardness measurements. The porosity and mechanical properties were found to be highly dependent on the layer thickness. Increasing the layer thickness increased the porosity of the manufactured parts while degrading their mechanical properties. Moreover, etched samples revealed a fine cellular dendritic microstructure; decreasing the layer thickness caused the microstructure to become fine-grained. Tests showed that for samples manufactured with the chosen laser power, a layer thickness of more than 0.75 mm is too high to maintain the structural integrity of the deposited material.


2002 ◽  
Vol 753 ◽  
Author(s):  
Masahiro Tsuji ◽  
Hideki Hosoda ◽  
Kenji Wakashima ◽  
Yoko Yamabe-Mitarai

ABSTRACTEffects of ruthenium (Ru) substitution on constituent phases, phase transformation temperatures and mechanical properties were investigated for Ti-Ni shape memory alloys. Ti50Ni50-XRuX alloys with Ru contents (X) from 0mol% (binary TiNi) to 50mol% (binary TiRu) were systematically prepared by Ar arc-melting followed by hot-forging at temperatures from 1173K to 1673K depending on chemical composition. Phase stability was assessed by DSC (differential scanning calorimetry), XRD (X-ray diffractometry) and TEM (transmission electron microscopy). Mechanical properties were investigated using hardness and tensile tests at room temperature. With increasing Ru content, it was found that the lattice parameter of B2 phase increases, the martensitic transformation temperature slightly decreases, and the melting temperature increases monotonously. Besides, R-phase appears for Ti-Ni alloys containing 3mol% and 20mol%Ru but no diffusionless phase transformation is seen in Ti-Ni alloy containing 5mol%Ru. Vickers hardness shows the maximum at an intermediate composition (HV1030 at 30mol%Ru); this suggests that large solid solution hardening is caused by Ru substitution for the Ni-sites in TiNi.


Sign in / Sign up

Export Citation Format

Share Document