A Study on the Tribological Properties of DLC Films Deposited with Different Reaction Gases

2005 ◽  
Vol 903 ◽  
Author(s):  
Yong Ki Cho ◽  
Gang San Kim ◽  
Kyoung Il Moon ◽  
Sang Gweon Kim ◽  
Sung Wan Kim

AbstractDiamond like carbon (DLC) coatings have attracted great attention for use in various applications in automobile industry and machinery because they have excellent properties such as low friction coefficient and ultra high strength. The low friction coefficient of DLC comes from anti-adhesion with other materials, smooth surface, lubrication of graphite structure at the contacting point of films, and the hydrogen content of the films. Many researches have been focused on the microstructure effects on the tribological properties of DLC films but few have been reported on the effect of hydrogen content. In this study, the effect of hydrogen content on the friction coefficient of DLC films has been investigated.DLC films have been deposited on D2 steel by plasma enhanced CVD (Pulsed DC PECVD) method with different precursor gas of C2H2and CH4and different gas pressure. The effects of gas composition on the hydrogen content in DLC films and the resulting tribological properties have been reviewed. Si interlayer was deposited on D2 to improve adhesion of DLC on steel substrates. The characteristics of microstructure were evaluated by Raman spectroscope and composition was measured by RBS and EDS. The tribological behaviors of DLC films were investigated using ball on disk tribometer. The hardness of films was examined by nano-indenter. The failure mechanism of DLC deposited on steel substrates was examined using optical microscope and SEM/EDS. The results showed that the friction coefficient of DLC films deposited with C2H2was 0.06 and that of the film with CH4was 0.15. The friction coefficient improved with decreasing hydrogen content in DLC films.

2019 ◽  
Vol 293 ◽  
pp. 125-140
Author(s):  
Agnieszka Paradecka ◽  
Krzysztof Lukaszkowicz ◽  
Jozef Sondor

Low friction thin layers are an excellent alternative for conventional coatings. They provide increased life of the elements, to which they were applied, due to enhancing the hardness or chemical and electrochemical resistance. They help to avoid the cracks, oxidation, as well as possible structural changes during the element's work. However, they primarily improve tribological properties by increasing wear resistance and reducing the friction. This also applies to components operating under variable conditions such as load, speed, temperature. The presented article analyzes the properties of various low-friction thin layers deposited by vacuum methods on the steel substrates. DLC, TiC, MoS2, CrCN thin layers were chosen, as they achieve the lowest possible coefficient of friction. In the framework of this work the measurements of adhesion of the investigated layers to the substrate as well as the friction coefficient, chemical analysis, microstructure and topographic analysis of the low-friction layers were carried out.


2011 ◽  
Vol 694 ◽  
pp. 914-918
Author(s):  
Yu Qiang Zhao ◽  
Yan Zang ◽  
Yu Lin Qiao ◽  
Shan Lin Yang

The n-SiO2/FeS solid lubrication composite coating is prepared by means of the comprehensive treatment process of gridded laser quenching, low temperature ion sulfuration and vacuum impregnation technology. The tribological properties of n-SiO2/FeS solid lubrication composite coating are investigated under the condition of dry sliding, and the lubrication mechanisms are also preliminary discussed. The experiment results reveal that the friction coefficient of the coating is in the range of 0.065~0.10 when tested in 4067 minutes. Furthermore, its wear rate is only 6% of FeS solid lubrication duplex coating. This is testified that the n-SiO2/FeS solid lubrication composite coating is durable with low friction coefficient and wear resistance.


Author(s):  
Noritsugu Umehara ◽  
Kota Konishi ◽  
Motoyuki Murashima ◽  
Takayuki Tokoroyama

Abstract Tribological properties of a-C:H coatings has been investigated in various friction conditions. It is clear that temperature and mating materials give effects on tribological properties. In this study, we especially focus on the effect of mating material on its tribological properties of a-C:H coatings. Ball-on-disk friction test is conducted between a-C:H coating and 5 kinds of mating material, which is SiC, SiC(O)_800 (SiC oxidized at 800°C), SiC(O)_1050°C, SiC(O)_1300°C, and Quartz glass. It is found that a-C:H coatings shows low friction coefficient and low specific wear rate when O/Si ratio of the element content of mating material is 2, in other words, mating material is SiO2. In the wear scar of a-C:H coating after friction test with SiC, severe damage was confirmed. It is considered that a-C:H coating and SiO2 show low adhesion even at high temperature, which leads low friction and wear. Compared SiC(O) with Quartz, the friction coefficients with a-C:H coatings are respectively 0.013 and 0.038. Even though SiC(O) and Quartz are both SiO2, the tribological properties are different. On the wear track of SiC(O), transferred things from a-C:H coating are confirmed.


2010 ◽  
Vol 150-151 ◽  
pp. 102-107 ◽  
Author(s):  
Zhu Xin Wu ◽  
Lin Liu Zheng ◽  
Fa Xiao Fan

In the paper, the SF polymer water lubricated bearings is taken as the research objects. Both material testing and bearing simulation testing are carried out to research the tribological properties of bearings including water swelling properties, friction coefficient, and wear-resistant properties mainly. The results show that the SF material, which is a new type of material used in water lubricated tail bearing, has the characteristics of low friction coefficient, high load capacity, good wear-resistance, excellent self-lubricating properties, and low water swelling, which has a broad application in the shipbuilding industry.


2014 ◽  
Vol 802 ◽  
pp. 392-397
Author(s):  
Patrícia Cristiane Santana da Silva ◽  
Gislene Valdete Martins ◽  
Evaldo José Corat ◽  
Vladimir Jesus Trava-Airoldi

Excellent tribological properties of hard materials surface are desirable in several sectors of industry. Diamond-like carbon (DLC) coatings are well known for their low friction, excellent wear resistance, and high hardness. In this work, DLC films were deposited on AISI M2 steel using a modified PECVD pulsed-DC discharge. Multilayer of carbon and silicon were grown, alternately. Samples were produced with different layer thickness for carbon and silicon, and the same parameters for each material layer, in order to investigate friction coefficient in each layer, evaluate rate deposition variation and the gradient behavior of different layers. Raman spectroscopy was used to verify the structural arrangement of carbon atoms. The films were also characterized by scanning electron microscopy and EDX. Tribological tests were performed to observe adhesion between layers and substrate, friction, and wear. The results showed the variation of friction coefficient and that deposition rate declines when increasing number of layers.


2017 ◽  
Vol 1 (87) ◽  
pp. 12-20
Author(s):  
M. Makówka ◽  
B. Wendler

Purpose: Low friction nc-WC/a-C:H coatings deposited by means of magnetron sputtering provide very good tribological properties in friction couple against hard steels and good adhesion to steel substrates. Nevertheless, it was necessary to elaborate a new type of coatings because the nc-WC/a-C:H one had no use in friction couple against aluminium alloys. Design/methodology/approach: In the paper the WC/a-C:H and (Si, Cr)C/a-C:H coatings were investigated. The coatings were investigated by means of SEM, EDS, in order to obtain thickness, surface morphology and chemical composition of coatings. Tribological properties of deposited coatings were elaborated by means of 'pin-on-disc' method in friction couple against 100Cr6 bearing steel and AlSi alloy. Findings: It was stated that (Si, Cr)C/a-C:H coatings have very good tribological properties in friction couple against bearing steel and AlSi alloy (friction coefficient <0,1). In case of WC/a-C:H coatings, good tribological properties were achieved in friction couple with bearing steel. Both coatings have very low wear rate in investigated friction couples. Research limitations/implications: The (Si,Cr)C/a-C:H coating have a worse quality of adhesion to quenched and tempered Vanadis 23 HS steel substrate in comparison with the nc-WC/a-C:H coating. Resolving this disadvantage can increase potential of application of (Si, Cr)C/a-C:H coatings. Practical implications: Newly developed (Si, Cr)C/a-C:H coating has a greater application potential for modification of surfaces of elements working in friction couples against hardened steels and light alloys like AlSi. Originality/value: There are numerous publications where low friction carbon based coatings were described mostly as a coatings deposited on elements working in friction couples against hard steels. Undertaken tests showed that the newly developed (Si,Cr)C/a- C:H coating can have a broad spectrum of applications in friction couples against different counterbodies, including light Al alloys.


Author(s):  
Hema C. R. Moreira ◽  
Jorge A. B. Oliveira ◽  
Neftali L. V. Carreño ◽  
Ricardo M. Silva ◽  
Irene T. S. Garcia ◽  
...  

Abstract Electrodeposited ZnNi coatings are widely used to improve the corrosion resistance of steel substrates, but their tribological properties are also relevant for loaded contacts under relative motion. This work investigates the hypothesis of improving tribological properties of electrodeposited ZnNi coatings via dispersion of niobium pentoxide nanoparticles (1g/L) in the electrolytic bath. The niobium pentoxide nanoparticles were produced via hydrothermal synthesis assisted by microwave. The surface morphology and chemical composition of the coatings were analysed by scanning electron microscopy coupled with X-ray dispersive energy, X-ray diffraction and X-ray photoelectron spectroscopy. The tribological performance of the coatings was assessed using dry reciprocating ball-on-flat tests at normal loads between 3 and 6 N. The use of niobium pentoxide nanoparticles resulted in significantly denser coatings, with some Nb incorporated in the coated surfaces. Under the lowest normal load, all coated specimens showed relatively low friction (~0.2) and negligible damag. As the normal load increased, the coating produced using niobium pentoxide nanoparticles showed stronger adherence, while conventional ZnNi coating showed increased friction and spalling for the highest load. It is believed that the Nb2O5 nanoparticles increased the number of sites for heterogeneous nucleation, refining the microstructure, so that tougher and more adherent coatings were produced.


Author(s):  
Puneet Chandran ◽  
Krishna Valleti ◽  
Venu Gopal Anne

Abstract Providing advanced coating solutions for high speed dry machining applications is gaining importance by the day especially with the increasing employment of difficult-to-machine materials in niche areas. Taking into account the recent demands in developing such coatings, in the present study, a novel low friction coefficient nanocomposite coating: CrAlSiN/G-CrAlSiCN (G: Gradient) was developed which can be used in high speed or dry machining applications. Initially, CrAlSiN nanocomposite coating and carbon incorporated CrAlSiN coating were deposited separately using the cylindrical cathodic arc PVD technique. The as deposited films were comprehensively analyzed to determine their adhesion strength, phase composition, sliding wear properties (friction coefficient), hardness and tool life. Preliminary observations revealed that the films did not show evidence of diamond-like carbon (DLC) formation (from Raman analysis). Further, an increase in the carbon content led to a steep decrease in the adhesion strength. This result persuaded a study on developing a novel coating with gradient carbon architecture which would retain the properties of a nanocomposite whilst supporting the nanocomposite under-layer by reducing the coefficient of friction. In comparison to the CrAlSiN nanocomposite coating and a standard DLC coating, the novel gradient carbon coating showed superior tribological properties along with a better tool life. This study marks the first such attempt at studying the influence of carbon incorporation to the CrAlSiN nanocomposite coating on improving the overall mechanical and tribological properties of the coating architecture (CrAlSiN/G-CrAlSiCN) for dry machining applications.


Author(s):  
Keisuke Hara ◽  
Hiromi Isobe

Abstract Tribological properties such as lubrication, friction and wear resistance are important to improve machine operating efficiency, machine performances and machine life. To improve tribological properties of sliding surface, scraping is available. Scraping fabricates many small depression on target surface evenly, the depression will function oil hole which promote lubrication of flat bearing surface. Many researchers have reported the surface texturing method which aim is similar to scraping. For example, the techniques fast tool servo turning with diamond insert tool and turn mill processing by dual spindle turning center were reported to fabricate periodically micro dimple. However, these techniques employ expensive high precision machine tools. This paper introduces a more cheaply and rapidly surface texturing technique which employs ultrasonic vibration turning to obtain low friction surface and improve tribological properties. In ultrasonic turning, cutting tool tip is vibrated in principal direction and radial direction simultaneously origin from poisons deformation of ultrasonic transducer. The radial direction tool vibration functions to squeeze workpiece surface in workpiece radial direction periodically, textured surface will be obtained. The results of ultrasonic turning experiments, textured surfaces were obtained. In order to evaluate the tribological performance of the turned surface, friction coefficient between stainless steel pin and turned surface were measured under oil dipping condition. It was confirmed that friction coefficient of ultrasonic turned surface is drastically reduced compared with ordinary turned surface. And proposed technique is available to perform surface texturing for several materials.


Sign in / Sign up

Export Citation Format

Share Document