Porosity and its Effect on Barrier Performance of Thin Electroless Cobalt Alloy Caps

2007 ◽  
Vol 990 ◽  
Author(s):  
Qingyun Chen ◽  
Jun Liu ◽  
Elizabeth Walker ◽  
Richard Hurtubise ◽  
Daniel Stritch ◽  
...  

ABSTRACTPinhole densities of electroless cobalt alloy films on copper substrate are characterized using optical and electrochemical methods. The impact of pits or pinholes on deposit film barrier property is discussed. The improved film barrier property is shown by reduction of pits formation through deposition process optimization.

2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


1988 ◽  
Vol 24 (6) ◽  
pp. 3000-3002 ◽  
Author(s):  
R.G. Walmsley ◽  
B.R. Natarajan ◽  
D. Wong

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 234
Author(s):  
Chunxia Jiang ◽  
Rongbin Li ◽  
Xin Wang ◽  
Hailong Shang ◽  
Yong Zhang ◽  
...  

In this study, high-entropy alloy films, namely, AlCrTaTiZr/AlCrTaTiZr-N, were deposited on the n-type (100) silicon substrate. Then, a copper film was deposited on the high-entropy alloy films. The diffusion barrier performance of AlCrTaTiZr/AlCrTaTiZr-N for Cu/Si connect system was investigated after thermal annealing for an hour at 600 °C, 700 °C, 800 °C, and 900 °C. There were no Cu-Si intermetallic compounds generated in the Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks after annealing even at 900 °C through transmission electron microscopy (TEM) and atomic probe tomography (APT) analysis. The results indicated that AlCrTaTiZr/AlCrTaTiZr-N alloy films can prevent copper diffusion at 900 °C. The reason was investigated in this work. The amorphous structure of the AlCrTaTiZr layer has lower driving force to form intermetallic compounds; the lattice mismatch between the AlCrTaTiZr and AlCrTaTiZ-rN layers increased the diffusion distance of the Cu atoms and the difficulty of the Cu atom diffusion to the Si substrate.


Author(s):  
Jing Xie ◽  
Daniel Nelias ◽  
Hélène Walter-le Berre ◽  
Yuji Ichikawa ◽  
Kazuhiro Ogawa

Cold spray is a rapidly developing coating technology for depositing materials in the solid state. In this deposition process, the spray particles are accelerated to a high velocity by a high-speed gas flow, and then form a dense and high quality coating due to plastic deformation of particles impinged upon the solid surface of substrate. 2D and 3D modelling of particle impacting behaviours in cold spray deposition process by using ABAQUS/Explicit was conducted for four couples of materials (i.e. impacting particle/impacted substrate): copper/aluminium, aluminium/copper, copper/copper, and aluminium/aluminium. A systematic analysis of a single impact was carried out considering different parameters, such as the initial impact velocity, initial temperature and contact angle, which affect the deposition process and subsequently the mechanical properties of coating. Three numerical methods have been evaluated and their performances are discussed for various simulation settings: (i) modelling in a Lagrangian reference frame; (ii) modelling using adaptive remeshing in an Arbitrary Lagrangian Eulerian (ALE) reference frame; and (iii), modelling in a CEL reference frame. It is found that the Coupled Eulerian Lagrangian (CEL) method has more advantages to simulate the large deformation of materials, and is also more efficient to prevent the excessive distortion of the mesh. A comparison between simulation results and experimental data from the literature was performed. Nevertheless, the CEL method is implicitly isothermal for ABAQUS v6.10, whereas the modelling in the classical Lagrangian reference frame does include coupled thermo-mechanical effects with a local increase of the temperature near the interface — due to friction — and for the highly plastically deformed elements — due to the heat dissipation linked to plasticity. A local rise of temperature at the impact surface may also be observed for oblique impacts. Finally a first attempt to simulate the deposition of several particles is made with a 3D CEL model, resulting in the creation of porosity at the interface between particles.


Author(s):  
Rajneesh Bhardwaj ◽  
Jon P. Longtin ◽  
Daniel Attinger

The objective of this work is to understand the coupling of fluid dynamics and heat transfer during the impact of a millimeter-size water droplet on a flat, solid glass substrate. In this work, a finite-element model is presented which simulates the transient fluid dynamics and heat transfer during the droplet deposition process, considering Laplace forces on the liquid-gas boundary, and the dynamics of wetting. A novel, experimental laser-based method is used to measure temperatures at the solid-liquid interface. This method is based on a thermoreflectance technique and provides unprecedented temporal and spatial resolutions of 1 microsecond and 20 micrometer, respectively. Matching between simulations, temperature measurements and high-speed visualization allows the determination of the interfacial heat transfer coefficient.


Author(s):  
Feini Zhang ◽  
Anthony M. Jacobi

Surface wettability of materials is important in heat transfer and thermal processes at micro-scale. This paper presents the manipulation of metal surface wettability by nanofluid boiling nanoparticle deposition. As confirmed by microscopy, particles can be deposited on metal surfaces by boiling in nanoparticle suspension, which significantly enhanced the surface wettabiliy relative to that of its original condition. The change in wettability is coupled to boiling conditions, such as nanoparticle concentration, heat flux, boiling duration, substrate roughness and so on. It has been observed that the higher the concentration of nanoparticles in the liquid during the boiling deposition process, the more pronounced the impact on wetting. Hence, surface wettability can be manipulated by controlling the nanoparticle concentration during the nanofluid boiling nanoparticle deposition (NBND) process. Such method can potentially be applied to enhance the heat transfer performance in thermal devices.


Sign in / Sign up

Export Citation Format

Share Document