ALL-ORGANIC FLEXIBLE AND TRANSARENT AMBIPOLAR FETs WITH ORGANIC BULK HETEROJUNCTIONS

2007 ◽  
Vol 1029 ◽  
Author(s):  
Piero Cosseddu ◽  
Annalisa Bonfiglio ◽  
Ingo Salzmann ◽  
Jurge P. Rabe ◽  
Norbert Koch

AbstractWe report on the realization of flexible and transparent all-organic Ambipolar Field Effect Transistors. The devices were assembled on a flexible plastic foil, i.e. Mylar®, and the contacts were realized with poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and patterned by means of Soft Lithography, MicroContact Printing (μCP). As semiconductor layer we used organic bulk heterojunctions of pentacene/C60 realized either by co-deposition of the two different molecules or by a double layer structure in which pentacene was used as buffer layer at the interface with the gate dielectric. Interestingly, all devices (co-deposited and double layer), measured in air, worked in accumulation mode as ambipolar OFETs, however some interesting differences between the two structures can be pointed out. Supported by Atomic Force Microscopy, we demonstrated that growing C60 on a pre-deposited pentacene buffer layer leads to a clear improvement in the morphology and crystallinity of the deposited film allowing to improve n-type conduction by two orders of magnitude. This work is particularly interesting because on one hand it confirms the importance of the substrate properties for the ordered growth of organic semiconductors, which determines the transport properties of organic materials; moreover, it demonstrates, also for n-type and ambipolar transistors, the possibility of avoiding problems normally associated to metal contacts: the lack of mechanical robustness, flexibility, and the unfeasibility of realizing contacts with low cost techniques like printing or soft lithography. The flexibility and transparency of the final OFET structure and the simple low cost fabrication technique employed pave the way for an economic mass production of large area transparent “Plastic Electronics”.

2016 ◽  
Vol 83 (7) ◽  
Author(s):  
Congrui Jin ◽  
Qichao Qiao

Microcontact printing (MicroCP) is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact. Pyramidal PDMS stamps have received a lot of attention in the research community in recent years, due to the fact that the use of the pyramidal architecture has multiple advantages over traditional rectangular and cylindrical PDMS stamps. To better understand the dynamic MicroCP process involving pyramidal PDMS stamps, in this paper, numerical studies on frictionless adhesive contact between pyramidal PDMS stamps and transversely isotropic materials are presented. We use a numerical simulation method in which the adhesive interactions are represented by an interaction potential and the surface deformations are coupled by using half-space Green's functions discretized on the surface. It shows that for pyramidal PDMS stamps, the contact area increases significantly with increasing applied load, and thus, this technique is expected to provide a simple, efficient, and low-cost method to create variable two-dimensional arrays of dot chemical patterns for nanotechnology and biotechnology applications. The DMT-type and Johnson–Kendall–Roberts (JKR)-type-to-DMT-type transition regimes have been explored by conducting the simulations using smaller values of Tabor parameters.


2001 ◽  
Vol 665 ◽  
Author(s):  
Howard E. Katz ◽  
Andrew J. Lovinger ◽  
X. Michael Hong ◽  
Jerainne Johnson

Organic semiconductors are of continued interest for low-cost display drivers and logic elements. Field-effect transistors (FETs) with organic semiconductor channels have been fabricated in arrays to drive electrophoretic display pixels[1] and polymer dispersed liquid crystals (http://www.research.philips.com/pressmedia/releases/000901a.html). Complementary logic elements and shift registers containing hundreds of organic-based FETs have been produced[2], and high-speed organic circuits have been fabricated on polyester substrates.[3] The source and drain electrodes of individual FETs have been patterned using microcontact printing and inkjet methods[4] to give extraordinary aspect ratios. Inorganic[5] and hybrid[6] materials have been deposited as FET semiconductors using the methods of “organic electronics”. Organic FET channels have been harnessed to demonstrate ambipolar transport[7], chemical sensitivity[8], superconductivity[9], and electrically pumped lasers[10].


2000 ◽  
Vol 10 (01) ◽  
pp. 39-46 ◽  
Author(s):  
HONG KOO KIM ◽  
NASIR ABDUL BASIT

We have proposed and developed a ferroelectric nonvolatile field-effect transistor that incorporates a thin MgO buffer layer between a ferroelectric film and an oxidized Si substrate. The use of an MgO/SiO2 buffer for a ferroelectric gate is based on the following findings. First, a thin MgO buffer serves well as a template layer allowing the growth of highly oriented ferroelectric films on amorphous substrates. Second, MgO works well as a diffusion barrier between a ferroelectric film and a substrate, protecting the silicon FET channel region from interdiffusion or reaction that may occur during device processing. Third, thermal oxidation of Si is known to be one of the best ways of passivating silicon surfaces, thus to reduce high quality FET channels. The fabricated devices show excellent performance in ferroelectric polarization switching, memory retention, and fatigue resistance. The devices also demonstrate scalability in device dimension and operating voltage, i.e., they are suitable for low voltage operation (3-5 V or below) showing a sufficient memory window (1-2 V).


2004 ◽  
Vol 820 ◽  
Author(s):  
Kyung M. Choi ◽  
John A. Rogers

AbstractRecent advances in microfabrication technology allow us to develop a number of novel devices with high performance. In microfabrication technology, a new development, ‘soft lithography’, is widely used by making stamps, molding, and microcontact-printing due to the low cost and easy processability. The resolution of soft lithography significantly relies on the performance of stamping materials. However, pattern transfers using commercially available PDMS stamp materials often end up with mechanical failures such as collapse or sag due to their low physical stiffness. Additionally, most of those commercial PDMS materials are thermally curable systems, which results in significant thermal deformations. These limitations have motivated us to start this work, which demonstrates a ‘chemical approach’ to overcome those limits by developing new stiff, photocurable PDMS stamp materials with attached designed functionalities. Molecular modification of PDMS materials results in advanced soft lithography, which produces enhanced physical toughness, lower polymerization shrinkage, and photopatterning capability.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Qin Gao ◽  
Anping Huang ◽  
Jing Zhang ◽  
Yuhang Ji ◽  
Jingjing Zhang ◽  
...  

AbstractClosely following the rapid development of artificial intelligence, studies of the human brain and neurobiology are focusing on the biological mechanisms of neurons and synapses. Herein, a memory system employing a nanoporous double-layer structure for simulation of synaptic functions is described. The sponge-like double-layer porous (SLDLP) oxide stack of Pt/porous LiCoO2/porous SiO2/Si is designed as presynaptic and postsynaptic membranes. This bionic structure exhibits high ON–OFF ratios up to 108 during the stability test, and data can be maintained for 105 s despite a small read voltage of 0.5 V. Typical synaptic functions, such as nonlinear transmission characteristics, spike-timing-dependent plasticity, and learning-experience behaviors, are achieved simultaneously with this device. Based on the hydrodynamic transport mechanism of water molecules in porous sponges and the principle of water storage, the synaptic behavior of the device is discussed. The SLDLP oxide memristor is very promising due to its excellent synaptic performance and potential in neuromorphic computing.


2002 ◽  
Vol 57 (6-7) ◽  
pp. 419-424 ◽  
Author(s):  
Sadamu Takeda ◽  
Yuko Gotoh ◽  
Goro Maruta ◽  
Shuichi Takahara ◽  
Shigeharu Kittaka

The rotational behavior of the interlayer water molecules of deuterated vanadium pentoxide hydrate, V2O5.nD2O, was studied by solid-state deuterium NMR for the mono- and double-layer structures of the adsorbed water molecules. The rotational motion was anisotropic even at 355 K for both the mono- and double-layer structures. The 180° flipping motion about the C2-symmetry axis of the water molecule and the rotation around the figure axis, which makes an angle Ɵ with the C2-axis, occurred with the activation energy of (34±4) and (49±6) kJmol-1, respectively. The activation energies were almost independent of the mono- and double-layer structures of the water molecules, but the angle Ɵ made by the two axes varied from 33° for the monolayer to 25° for the double-layer at 230 K. The angle started to decrease above 250 K (e. g. the angle was 17 at 355 K for the double-layer structure). The results indicate that the average orientation of the water molecules in the two dimensional interlayer space depends on the layer structure and on the temperature. From the deuterium NMR spectrum at 130 K, the quadrupole coupling constant e2Qq/h = 240 kHz and the asymmetry parameter η= 0.12 were deduced. These values indicate the average hydrogen bond distance R(O H) = 2.0 Å for the D2O molecules in the 2D-interlayer space


2007 ◽  
Vol 280-283 ◽  
pp. 887-890
Author(s):  
Zhong Min Zhao ◽  
Long Zhang ◽  
Jian Jiang Wang ◽  
Shi Yan ◽  
Jin Rong Cao

The design on joining of metal and ceramics in composite pipes fabricated by the SHS metallurgical process is carried on with adding (TiO2 +Al+C+Ni) subsystem in(CrO3+Al) system, and the composite pipes with three-layer structure of steel substrate, intermediate alloy and lined ceramics are fabricated with low cost and high performance. Combustion determination and mechanical test indicate that adding suitable amount of Ni powder in combustion system rather than (NiO+Al) subsystem can cause combustion behavior of a whole system and volume fraction of the carbides to be controlled easily, and is beneficial to improve joining of the intermediate alloy and steel substrate, causing compression strength and compression shear strength of the composite pipes to be increased greatly.


2018 ◽  
Vol 170 ◽  
pp. 07010 ◽  
Author(s):  
Vladimir D. Ryzhikov ◽  
Sergei V. Naydenov ◽  
Thierry Pochet ◽  
Gennadiy M. Onyshchenko ◽  
Leonid A. Piven ◽  
...  

We have developed and evaluated a new approach to fast neutron and neutron-gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline scintillators contained in a transparent organic (plastic) matrix. Layers of the composite material are alternated with layers of transparent plastic scintillator material serving as light guides. The resulting detection medium – designated as ZEBRA – serves as both an active neutron converter and a detection scintillator which is designed to detect both neutrons and gamma-quanta. The composite layers of the ZEBRA detector consist of small heavy-oxide scintillators in the form of granules of crystalline BGO, GSO, ZWO, PWO and other materials. We have produced and tested the ZEBRA detector of sizes 100x100x41 mm and greater, and determined that they have very high efficiency of fast neutron detection (up to 49% or greater), comparable to that which can be achieved by large sized heavy-oxide single crystals of about Ø40x80 cm3 volume. We have also studied the sensitivity variation to fast neutron detection by using different types of multilayer ZEBRA detectors of 100 cm2 surface area and 41 mm thickness (with a detector weight of about 1 kg) and found it to be comparable to the sensitivity of a 3He-detector representing a total cross-section of about 2000 cm2 (with a weight of detector, including its plastic moderator, of about 120 kg). The measured count rate in response to a fast neutron source of 252Cf at 2 m for the ZEBRA-GSO detector of size 100x100x41 mm3 was 2.84 cps/ng, and this count rate can be doubled by increasing the detector height (and area) up to 200x100 mm2. In summary, the ZEBRA detectors represent a new type of high efficiency and low cost solid-state neutron detector that can be used for stationary neutron/gamma portals. They may represent an interesting alternative to expensive, bulky gas counters based on 3He or 10B neutron detection technologies.


Sign in / Sign up

Export Citation Format

Share Document