High-Performance Scan-Type Stage for Large Substrates

2007 ◽  
Vol 1030 ◽  
Author(s):  
Ohno Takashi ◽  
K. Azuma ◽  
T. Mizutani ◽  
H. Kobayashi

AbstractDue to the steady increase in substrate sizes for low-temperature poly-Si devices and LSIs, there are strong demands for larger substrate handling, more accurate positioning and shorter tact time for many processes such as laser crystallization scan exposure, [3], and dopant activation [4] and so on. In order to satisfy such demands, we have developed a high-performance scan-type stage for large substrates. In this paper, we describe the outline of the mechanical structure and also the performance of this stage.The XY moving stage was installed on an air slider of planarized granite. Stroke sizes of the stage were more than 920 mm and 730 mm for scan and step directions, respectively; the stage size was matched to the large glass substrates (4th generation). The stroke in the vertical direction was more than 32 mm, and the stage could rotate for more than ±0.3 degree for alignment.The stage is driven by a newly introduced shaft-type linear motor, which consists of a fixed stainless-steel pipe shaft and a moving cylindrical coil rounded around the shaft. There are thin annular permanent magnets stacked inside the shaft. Since this coaxially aligned structure of permanent magnets and the coil is a nearly ideal configuration for efficient magnetic coupling, this motor could generate a stronger driving force; this enabled rapid acceleration and deceleration of the stage. Since stacked magnets generate parallel and uniform magnetic field along the shaft surface but slight field for transverse direction, electromagnetic force slightly fluctuated along the shaft, independent of the pitch of the magnet plate. This introduced another important advantage of the shaft-type linear motor that cogging, which has a serious impact on processing, was almost eliminated. This fluctuation was further reduced by introducing a real-time feedback system. The shaft-type motor, however, had been said to have the serious difficulty of elongation since its own weight bends the shaft. This problem was solved by using new magnetic materials and an optimized design of physical dimensions of the motor.Experiments have been conducted under stabilized temperature conditions. The maximum scan speed of the stage was more than 500 mm/s with a speed stability of 0.03%, about one order of magnitude better than the reported value of about 0.5%. Acceleration and deceleration times from the halt condition to the constant velocity condition and vise versa were 1.0 s; the scan time was as short as 1.8 s for a 920 mm stroke. The “straight extent” was always better than ±0.5 mm Projection optics is commercially available for shaping a 30-mm-long excimer laser light beam on a sample surface. If we combine this stage and such optics, the whole area of a 4th-generation substrate surface can be scanned within a little more than 1 minute; that is, extremely high throughput can be expected. For example, to grow arrays of large Si grains, two-dimensional position control is the most important subject.

Author(s):  
R. Levi-Setti ◽  
J. M. Chabala ◽  
R. Espinosa ◽  
M. M. Le Beau

We have shown previously that isotope-labelled nucleotides in human metaphase chromosomes can be detected and mapped by imaging secondary ion mass spectrometry (SIMS), using the University of Chicago high resolution scanning ion microprobe (UC SIM). These early studies, conducted with BrdU- and 14C-thymidine-labelled chromosomes via detection of the Br and 28CN- (14C14N-> labelcarrying signals, provided some evidence for the condensation of the label into banding patterns along the chromatids (SIMS bands) reminiscent of the well known Q- and G-bands obtained by conventional staining methods for optical microscopy. The potential of this technique has been greatly enhanced by the recent upgrade of the UC SIM, now coupled to a high performance magnetic sector mass spectrometer in lieu of the previous RF quadrupole mass filter. The high transmission of the new spectrometer improves the SIMS analytical sensitivity of the microprobe better than a hundredfold, overcoming most of the previous imaging limitations resulting from low count statistics.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1034
Author(s):  
Ching-Chien Huang ◽  
Chin-Chieh Mo ◽  
Guan-Ming Chen ◽  
Hsiao-Hsuan Hsu ◽  
Guo-Jiun Shu

In this work, an experiment was carried out to investigate the preparation condition of anisotropic, Fe-deficient, M-type Sr ferrite with optimum magnetic and physical properties by changing experimental parameters, such as the La substitution amount and little additive modification during fine milling process. The compositions of the calcined ferrites were chosen according to the stoichiometry LaxSr1-xFe12-2xO19, where M-type single-phase calcined powder was synthesized with a composition of x = 0.30. The effect of CaCO3, SiO2, and Co3O4 inter-additives on the Sr ferrite was also discussed in order to obtain low-temperature sintered magnets. The magnetic properties of Br = 4608 Gauss, bHc = 3650 Oe, iHc = 3765 Oe, and (BH)max = 5.23 MGOe were obtained for Sr ferrite hard magnets with low cobalt content at 1.7 wt%, which will eventually be used as high-end permanent magnets for the high-efficiency motor application in automobiles with Br > 4600 ± 50 G and iHc > 3600 ± 50 Oe.


2021 ◽  
Vol 13 (4) ◽  
pp. 803
Author(s):  
Lingchen Lin ◽  
Kunyong Yu ◽  
Xiong Yao ◽  
Yangbo Deng ◽  
Zhenbang Hao ◽  
...  

As a key canopy structure parameter, the estimation method of the Leaf Area Index (LAI) has always attracted attention. To explore a potential method to estimate forest LAI from 3D point cloud at low cost, we took photos from different angles of the drone and set five schemes (O (0°), T15 (15°), T30 (30°), OT15 (0° and 15°) and OT30 (0° and 30°)), which were used to reconstruct 3D point cloud of forest canopy based on photogrammetry. Subsequently, the LAI values and the leaf area distribution in the vertical direction derived from five schemes were calculated based on the voxelized model. Our results show that the serious lack of leaf area in the middle and lower layers determines that the LAI estimate of O is inaccurate. For oblique photogrammetry, schemes with 30° photos always provided better LAI estimates than schemes with 15° photos (T30 better than T15, OT30 better than OT15), mainly reflected in the lower part of the canopy, which is particularly obvious in low-LAI areas. The overall structure of the single-tilt angle scheme (T15, T30) was relatively complete, but the rough point cloud details could not reflect the actual situation of LAI well. Multi-angle schemes (OT15, OT30) provided excellent leaf area estimation (OT15: R2 = 0.8225, RMSE = 0.3334 m2/m2; OT30: R2 = 0.9119, RMSE = 0.1790 m2/m2). OT30 provided the best LAI estimation accuracy at a sub-voxel size of 0.09 m and the best checkpoint accuracy (OT30: RMSE [H] = 0.2917 m, RMSE [V] = 0.1797 m). The results highlight that coupling oblique photography and nadiral photography can be an effective solution to estimate forest LAI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Yun Tian ◽  
Oliver Gutfleisch ◽  
Olle Eriksson ◽  
Levente Vitos

AbstractTetragonal ($${\hbox{L1}}_{0}$$ L1 0 ) FeNi is a promising material for high-performance rare-earth-free permanent magnets. Pure tetragonal FeNi is very difficult to synthesize due to its low chemical order–disorder transition temperature ($$\approx {593}$$ ≈ 593  K), and thus one must consider alternative non-equilibrium processing routes and alloy design strategies that make the formation of tetragonal FeNi feasible. In this paper, we investigate by density functional theory as implemented in the exact muffin-tin orbitals method whether alloying FeNi with a suitable element can have a positive impact on the phase formation and ordering properties while largely maintaining its attractive intrinsic magnetic properties. We find that small amount of non-magnetic (Al and Ti) or magnetic (Cr and Co) elements increase the order–disorder transition temperature. Adding Mo to the Co-doped system further enhances the ordering temperature while the Curie temperature is decreased only by a few degrees. Our results show that alloying is a viable route to stabilizing the ordered tetragonal phase of FeNi.


2021 ◽  
Vol 11 (5) ◽  
pp. 2150
Author(s):  
Claudio Rossi ◽  
Alessio Pilati ◽  
Marco Bertoldi

This paper deals with the digital implementation of a motor control algorithm based on a unified machine model, thus usable with every traditional electric machine type (induction, brushless with interior permanent magnets, surface permanent magnets or pure reluctance). Starting from the machine equations in matrix form in continuous time, the paper exposes their discrete time transformation, suitable for digital implementation. Since the solution of these equations requires integration, the virtual division of the calculation time in sub-intervals is proposed to make the calculations more accurate. Optimization of this solver enables faster runs and higher precision especially when high rotating speed requires fast calculation time. The proposed solver is presented at different implementation levels, and its speed and accuracy performance are compared with standard solvers.


SLEEP ◽  
2020 ◽  
Author(s):  
Evan D Chinoy ◽  
Joseph A Cuellar ◽  
Kirbie E Huwa ◽  
Jason T Jameson ◽  
Catherine H Watson ◽  
...  

Abstract Study Objectives Consumer sleep-tracking devices are widely used and becoming more technologically advanced, creating strong interest from researchers and clinicians for their possible use as alternatives to standard actigraphy. We therefore tested the performance of many of the latest consumer sleep-tracking devices, alongside actigraphy, versus the gold-standard sleep assessment technique, polysomnography (PSG). Methods In total, 34 healthy young adults (22 women; 28.1 ± 3.9 years, mean ± SD) were tested on three consecutive nights (including a disrupted sleep condition) in a sleep laboratory with PSG, along with actigraphy (Philips Respironics Actiwatch 2) and a subset of consumer sleep-tracking devices. Altogether, four wearable (Fatigue Science Readiband, Fitbit Alta HR, Garmin Fenix 5S, Garmin Vivosmart 3) and three non-wearable (EarlySense Live, ResMed S+, SleepScore Max) devices were tested. Sleep/wake summary and epoch-by-epoch agreement measures were compared with PSG. Results Most devices (Fatigue Science Readiband, Fitbit Alta HR, EarlySense Live, ResMed S+, SleepScore Max) performed as well as or better than actigraphy on sleep/wake performance measures, while the Garmin devices performed worse. Overall, epoch-by-epoch sensitivity was high (all ≥0.93), specificity was low-to-medium (0.18-0.54), sleep stage comparisons were mixed, and devices tended to perform worse on nights with poorer/disrupted sleep. Conclusions Consumer sleep-tracking devices exhibited high performance in detecting sleep, and most performed equivalent to (or better than) actigraphy in detecting wake. Device sleep stage assessments were inconsistent. Findings indicate that many newer sleep-tracking devices demonstrate promising performance for tracking sleep and wake. Devices should be tested in different populations and settings to further examine their wider validity and utility.


2019 ◽  
Vol 485 (3) ◽  
pp. 3370-3377 ◽  
Author(s):  
Lehman H Garrison ◽  
Daniel J Eisenstein ◽  
Philip A Pinto

Abstract We present a high-fidelity realization of the cosmological N-body simulation from the Schneider et al. code comparison project. The simulation was performed with our AbacusN-body code, which offers high-force accuracy, high performance, and minimal particle integration errors. The simulation consists of 20483 particles in a $500\ h^{-1}\, \mathrm{Mpc}$ box for a particle mass of $1.2\times 10^9\ h^{-1}\, \mathrm{M}_\odot$ with $10\ h^{-1}\, \mathrm{kpc}$ spline softening. Abacus executed 1052 global time-steps to z = 0 in 107 h on one dual-Xeon, dual-GPU node, for a mean rate of 23 million particles per second per step. We find Abacus is in good agreement with Ramses and Pkdgrav3 and less so with Gadget3. We validate our choice of time-step by halving the step size and find sub-percent differences in the power spectrum and 2PCF at nearly all measured scales, with ${\lt }0.3{{\ \rm per\ cent}}$ errors at $k\lt 10\ \mathrm{Mpc}^{-1}\, h$. On large scales, Abacus reproduces linear theory better than 0.01 per cent. Simulation snapshots are available at http://nbody.rc.fas.harvard.edu/public/S2016.


Sign in / Sign up

Export Citation Format

Share Document