Synthesis and Characterization of High Quality InN Nanowires and Nano-networks

2007 ◽  
Vol 1058 ◽  
Author(s):  
Zhihua Cai ◽  
Samir Garzon ◽  
Richard A. Webb ◽  
Goutam Koley

ABSTRACTHigh quality InN nanowires have been synthesized in a horizontal quartz-tube furnace through direct reaction between metallic Indium and Ammonia using Nitrogen as the carrier gas. Thin film of Au on SiO2/Si substrate has been used as the catalyst layer, facilitating vapor-liquid-solid growth of the nanostructures. The nanowires were grown at a very fast rate of up to 30 μm/hr. Smooth and horizontal nanowire growth was achieved only with nanoscale catalyst patterns, while large area catalyst coverage resulted in uncontrolled and three-dimensional growth. The InN nanowires, which were usually covered with a thin shell layer of In2O3, grew along [110] direction, with overall diameters 20 - 60 nm and lengths 5 - 15 μm. The synthesized nanowires bent spontaneously or got deflected from other nanowires at multiples of 30 degrees forming nano-networks. The catalyst particles for the NWs were found mostly at the sides of the NW apex which helped them to bend spontaneously or get deflected from other NWs at angles which were multiples of 30 degrees. The NW based FETs with a back-gated configuration have already been investigated. The gate-bias dependent mobility of the NWs ranged from 55 cm2/Vs to 220 cm2/Vs, and their carrier concentration was ∼1018 cm−3.

2011 ◽  
Vol 1348 ◽  
Author(s):  
Jian Lin ◽  
Miroslav Penchev ◽  
Guoping Wang ◽  
Rajat K Paul ◽  
Jiebin Zhong ◽  
...  

ABSTRACTIn this work, we report the synthesis and characterization of three dimensional heterostructures graphene nanostructures (HGN) comprising continuous large area graphene layers and ZnO nanostructures, fabricated via chemical vapor deposition. Characterization of large area HGN demonstrates that it consists of 1-5 layers of graphene, and exhibits high optical transmittance and enhanced electrical conductivity. Electron microscopy investigation of the three dimensional heterostructures shows that the morphology of ZnO nanostructures is highly dependent on the growth temperature. It is observed that ordered crystalline ZnO nanostructures are preferably grown along the <0001> direction. Ultraviolet spectroscopy indicates that the CVD grown HGN layers has excellent optical properties. A combination of electrical and optical properties of graphene and ZnO building blocks in ZnO based HGN provides unique characteristics for opportunities in future optoelectronic devices.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1920
Author(s):  
Badriyah Alhalaili ◽  
Ruxandra Vidu ◽  
Howard Mao ◽  
M. Saif Islam

Gallium oxide (Ga2O3) is a new wide bandgap semiconductor with remarkable properties that offers strong potential for applications in power electronics, optoelectronics, and devices for extreme conditions. In this work, we explore the morphology of Ga2O3 nanostructures on different substrates and temperatures. We used silver catalysts to enhance the growth of Ga2O3 nanowires on substrates such as p-Si substrate doped with boron, 250 nm SiO2 on n-Si, 250 nm Si3N4 on p-Si, quartz, and n-Si substrates by using a thermal oxidation technique at high temperatures (~1000 °C) in the presence of liquid silver paste that served as a catalyst layer. We present the results of the morphological, structural, and elemental characterization of the Ga2O3 nanostructures. This work offers in-depth explanation of the dense, thin, and long Ga2O3 nanowire growth directly on the surfaces of various types of substrates using silver catalysts.


CrystEngComm ◽  
2019 ◽  
Vol 21 (45) ◽  
pp. 6969-6977
Author(s):  
Ping Sun ◽  
Yuewei Liu ◽  
Jun Ma ◽  
Wei Li ◽  
Kailiang Zhang ◽  
...  

Large-area, uniform, and high quality continuous monolayer MoS2 was successfully grown on a SiO2/Si substrate, demonstrated using diverse analytical testing techniques.


2020 ◽  
Vol 10 (2) ◽  
pp. 639
Author(s):  
Minghui Gu ◽  
Chen Li ◽  
Yuanfeng Ding ◽  
Kedong Zhang ◽  
Shunji Xia ◽  
...  

Monolayer antimony (antimonene) has been reported for its excellent properties, such as tuneable band gap, stability in the air, and high mobility. However, growing high quality, especially large-area antimonene, remains challenging. In this study, we report the direct growth of antimonene on c-plane sapphire substrate while using molecular beam epitaxy (MBE). We explore the effect of growth temperature on antimonene formation and present a growth phase diagram of antimony. The effect of antimony sources (Sb2 or Sb4) and a competing mechanism between the two-dimensional (2D) and three-dimensional (3D) growth processes and the effects of adsorption and cracking of the source molecules are also discussed. This work offers a new method for growing antimonene and it provides ideas for promoting van der Waals epitaxy.


2017 ◽  
Vol 35 (3) ◽  
pp. 539-547
Author(s):  
Ştefan Ţălu ◽  
Sebastian Stach ◽  
Shikhgasan Ramazanov ◽  
Dinara Sobola ◽  
Guseyn Ramazanov

AbstractThe purpose of this study was to investigate the topography of silicon carbide films at two steps of growth. The topography was measured by atomic force microscopy. The data were processed for extraction of information about surface condition and changes in topography during the films growth. Multifractal geometry was used to characterize three-dimensional micro- and nano-size features of the surface. X-ray measurements and Raman spectroscopy were performed for analysis of the films composition. Two steps of morphology evolution during the growth were analyzed by multifractal analysis. The results contribute to the fabrication of silicon carbide large area substrates for micro- and nanoelectronic applications.


2014 ◽  
Vol 53 (14) ◽  
pp. 3063 ◽  
Author(s):  
Céline Gouldieff ◽  
Frank R. Wagner ◽  
Bertrand Bertussi ◽  
François Guillet ◽  
Jean-Yves Natoli

Author(s):  
E.V. An ◽  
◽  
S.А. Istekova ◽  
Kh.M. Kassymkanova ◽  
G.K. Jangulova ◽  
...  

The article deals with the possibility of using seismic exploration in solving problems of ore geology in complex mining and geological conditions of Kazakhstan. The substantiation and characterization of geological and geophysical conditions for conducting experimental 3D seismic surveys at the deposits of the Zhilandinsky group of copper sandstones located in the Karaganda region of Central Kazakhstan are presented. The tasks are defined and the technique of conducting high-resolution 3D seismic exploration is developed, accompanied by modern processing and interpretation complexes for obtaining high-quality seismic materials for solving geological problems: studying the structural and tectonic structure of ore areas, identifying and refining ore-controlling structures, detecting and deep mapping of tectonic faults, volumetric mapping of intrusive massifs. The directions and technology of the process of modeling ore horizons and tracing them in space based on the results of a comprehensive interpretation of three-dimensional seismic exploration and geological and geophysical data, which will significantly increase the reliability coefficient of forecasting ore deposits, are indicated.


Sign in / Sign up

Export Citation Format

Share Document