Is the End-of-Range Loops Kinetics Affected by Surface Proximity or Ion Beam Recoils Distribution?

1989 ◽  
Vol 147 ◽  
Author(s):  
E. Ganin ◽  
A. Marwick

AbstractWe studied formation and annihilation of dislocation loops formed beyond the amorphous/crystalline interface after indium and boron dual implantation and subsequent annealing in the 800–1 100°C temperature range. The residual damage for low (40 keV) and high (200 keV) energy In implants were compared. The depth of the amorphous region in the sample implanted with the higher energy ions was reduced by using anodic oxidation and etching, to equate it with that of the sample implanted by lower energy ions. This enabled the study of the effect of surface proximity on residual disorder upon annealing. The damage was strongly dependent on the energy of In ions. No end-of-range damage was observed for the low energy implant. High energy implantation resulted in end-of-range dislocation loops, stable below 1050°C. The loops kinetics was neither affected by their proximity to the surface, nor by In precipitation. Monte-Carlo full cascade simulation has been used to estimate the depth distribution of interstitials and vacancies produced by In implant.

1989 ◽  
Vol 158 ◽  
Author(s):  
Zheng Xu ◽  
Toshihiko Kosugi ◽  
Kenji Gamo ◽  
Susumu Namba

ABSTRACTW films were deposited on n-GaAs by ion beam assisted deposition technique using low energy H2+ and Ar+, and film properties and residual damage in the substrate were investigated by measuring X-ray photoemission, current-voltage characteristics and deep level transient spectroscopy. Films with a resistivity of 1O−5 ohm·cm were formed. It was observed that damage can be reduced using the low energy beams and that Schottky contacts with n-factor of almost 1 and barrier height of 0.88 eV were formed.


1992 ◽  
Vol 343 (3) ◽  
pp. 361-366 ◽  
Author(s):  
H. W. Becker ◽  
H. Ebbing ◽  
W. H. Schulte ◽  
S. W�stenbecker ◽  
M. Berheide ◽  
...  

2021 ◽  
Author(s):  
Aditya Japa ◽  
Subhendu K. Sahoo ◽  
Ramesh Vaddi ◽  
Manoj Kumar Majumder

Abstract Present CMOS technology with scaled channel lengths exhibited higher energy consumption in designing secure electronic circuits against hardware vulnerabilities and breaches. Specifically, CMOS sense amplifier based secure differential power analysis (DPA) countermeasures at scaled channel lengths show large energy consumption with increased vulnerability. Additionally, spin transfer torque magnetic tunnel junction (STT-MTJ) and CMOS based logic-in-memory (LiM) cells demonstrate high energy consumption due to the large write current requirement of STT-MTJ and poor MOS device performance at scaled channel lengths. This paper for the first time leverages emerging tunnel FET (TFET) steep-slope device characteristics and compatible non-volatile STT-MTJ devices for enhanced hardware security with ultra-low energy consumption at lower supply voltages. TFET based sense amplifier based logic (SABL) gates have been proposed that achieve 3× lower energy consumption compared to Si FinFET SABL designs. Further, utilizing TFET SABL gates, TFET Pride S-box is designed that exhibits higher DPA resilience with 3.2× lower energy consumption compared to FinFET designs. With resulted lower static power consumption, TFET SABL based crypto systems can show lower vulnerability to static power side-channel attacks. Besides, proposed STT-MTJ and TFET LiM gates achieves 4× lower energy consumption compared to STT-MTJ and FinFET designs. Moreover, these gates have been explored in logic encryption/locking technique that shows 3.1× lower energy consumption compared to STT-MTJ and FinFET based design.


1988 ◽  
Vol 100 ◽  
Author(s):  
E. J. Williams ◽  
E. G. Bithell ◽  
C. B. Boothroyd ◽  
W. M. Stobbs ◽  
R. J. Young ◽  
...  

ABSTRACTThe promotion of silicide reactions at the interface between silicon and a metal overlayer is described, the reactions being initiated by scanned ion beams. The relative effects of low and high energy Si+ and Si2+ beams are discussed and the results of subsequent annealing are compared with those seen when using low energy (5keV) argon ion beams. The implications for the writing of metallisation lines are also noted.


1991 ◽  
Vol 236 ◽  
Author(s):  
E. Chason ◽  
P. Bedrossian ◽  
J.Y. Tsao ◽  
B.W. Dodson ◽  
S.T. Picraux

AbstractWe have performed computer simulations of epitaxial growth and low-energy ion bombardment for comparison with reflection high-energy electron diffraction (RHEED) mesurements. The simulations are based on a hybrid Monte Carlo/rate equation approach which includes the processes of defect creation (adatom and surface vacancy), surface diffusion, and attachment and detachment from steps and islands. In this work, we focus on simulating the experimental observations of ion-induced RHEED oscillations and cancellation of RHEED oscillations during simultaneous ion bombardment and growth. For the interaction of the low-energy ion with the surface, we consider two mechanisms: preferential sputtering (where the sputtering cross section depends on the atomic coordination) and mobile vacancies. Our results indicate that the primary interaction of the ion beam with the surface is probably through the creation of mobile vacancies, and that the degree of preferential sputtering is not large.


1991 ◽  
Vol 235 ◽  
Author(s):  
E. Chason ◽  
P. Bedrossian ◽  
J. Y. Tsao ◽  
B. W. Dodson ◽  
S. T. Picraux

ABSTRACTWe have performed computer simulations of epitaxial growth and low-energy ion bombardment for comparison with reflection high-energy electron diffraction (RHEED) mesurements. The simulations are based on a hybrid Monte Carlo/rate equation approach which includes the processes of defect creation (adatom and surface vacancy), surface diffusion, and attachment and detachment from steps and islands. In this work, we focus on simulating the experimental observations of ion-induced RHEED oscillations and cancellation of RHEED oscillations during simultaneous ion bombardment and growth. For the interaction of the low-energy ion with the surface, we consider two mechanisms: preferential sputtering (where the sputtering cross section depends on the atomic coordination) and mobile vacancies. Our results indicate that the primary interaction of the ion beam with the surface is probably through the creation of mobile vacancies, and that the degree of preferential sputtering is not large.


2002 ◽  
Vol 09 (02) ◽  
pp. 1103-1108 ◽  
Author(s):  
L.-C. DUDA ◽  
T. SCHMITT ◽  
J. NORDGREN ◽  
G. DHALENNE ◽  
A. REVCOLEVSCHI

We have performed high-resolution inelastic X-ray emission scattering experiments at the Cu 3p-, Cu 3s-, and O 1s-resonances of the insulating cuprates CuGeO 3, CuO, La 2 CuO 4, and SrCuO 2. We introduce the novel low-energy s-edge Cu-RIXS which reveals a dd-excitation peak, which was previously unobserved due to insufficient resolution and intensity in high-energy (Cu 1s RIXS). Also, O 1s-RIXS of all cuprate sample is investigated. Surprisingly, there is a large spread in the energy loss values of the RIXS features for different compounds and we explain this by assigning the larger energy features to the occurrence of a Zhang–Rice singlet while the lower energy feature (only observed for CuGeO 3) is assigned to a dd-excitation.


1969 ◽  
Vol 47 (10) ◽  
pp. 1783-1793 ◽  
Author(s):  
A. V. Phelps

Techniques for the study of electron attachment and detachment are reviewed. The rate coefficients for the various processes of aeronomic interest are then discussed. The rates of three-body and dissociative attachment by thermal electrons have been successfully determined by swarm techniques and by high frequency studies of electrons produced by high energy particles and by photoionization. Collisional and associative detachment rates for thermal energy negative ions have been measured using the swarm and flowing afterglow techniques. Radiative attachment rates for some atmospheric negative ions have been calculated from measurements of photodetachment cross sections using crossed photon and ion beam techniques. Electron beam studies and measurements of ion kinetic energy have provided much useful information regarding the dissociative attachment process and the structure of molecular negative ions. Rate coefficients for low energy processes such as the three-body attachment to O2, the radiative attachment to O, and the associative detachment of O− in collisions with various atmospheric gases are reasonably well known. Other possibly important low energy processes, such as dissociative attachment to O3, radiative attachment to O2, and the associative detachment of O2− are less well known.


2018 ◽  
Vol 184 ◽  
pp. 01015
Author(s):  
Dimitra Pierroutsakou

In this lecture I will present the operation principle and the different kinds of gas detecting systems for charged particles employed in high-energy and low-energy physics environments, with particular focus on the requirements of nuclear physics experiments with low-energy Radioactive Ion Beams (RIBs). I will show in more details an example of gas detector used at the RIB in-flight facility EXOTIC, for the ion beam tracking and for time of flight measurements. Finally, I will discuss the use of an active target in nuclear physics experiments with RIBs together with some key improvements of first generation devices required for facing the challenges of more intense RIBs.


Sign in / Sign up

Export Citation Format

Share Document