Enzymatic Synthesis of Alkyds

1989 ◽  
Vol 174 ◽  
Author(s):  
Shimona Geresh

AbstractThis paper describes the application of lipase-catalyzed polytransesterification to the preparation of two series of unsaturated “all trans” polyesters (alkyds): in the first series the starting materials were diesters of fumaric acid and 1,4-butane diol, and in the second, bischloroethyl fumarate and aromatic diols (benzene dimethanol and derivatives of bisphenol A). Most of the reactions were carried out in tetrahydrofuran and acetonitrile. As opposed to the extensive isomerization which occurs during the synthesis of unsaturated polyesters by chemical polycondensation, no isomerization of the double bond was found under the mild conditions of enzymatic catalysis. The “all trans” character of our alkyds was determined by nmr spectroscopy, and average molecular weights and dispersivity were measured by gel permeation chromatography. The average molecular weight was found to vary with the solvent. In acetonitrile a relatively high-melting point alkyd was obtained (m.p. 106–108°C), with low solubility in conventional solvents. Powder X-ray diffraction and SEM analyses revealed crystaUinity and layer-type structures.

TAPPI Journal ◽  
2021 ◽  
Vol 20 (6) ◽  
pp. 381-391
Author(s):  
JULIANA M. JARDIM ◽  
PETER W. HART ◽  
LUCIAN LUCIA ◽  
HASAN JAMEEL

The present investigation undertook a systematic investigation of the molecular weight (MW) of kraft lignins throughout the pulping process to establish a correlation between MW and lignin recovery at different extents of the kraft pulping process. The evaluation of MW is crucial for lignin characterization and utilization, since it is known to influence the kinetics of lignin reactivity and its resultant physicochemical properties. Sweetgum and pine lignins precipitated from black liquor at different pHs (9.5 and 2.5) and different extents of kraft pulping (30–150 min) were the subject of this effort. Gel permeation chromatography (GPC) was used to deter- mine the number average molecular weight (Mn), mass average molecular weight (Mw), and polydispersity of the lignin samples. It was shown that the MW of lignins from both feedstocks follow gel degradation theory; that is, at the onset of the kraft pulping process low molecular weightlignins were obtained, and as pulping progressed, the molecular weight peaked and subsequently decreased. An important finding was that acetobromination was shown to be a more effective derivatization technique for carbohydrates containing lignins than acetylation, the technique typically used for derivatization of lignin.


2008 ◽  
Vol 47-50 ◽  
pp. 294-297 ◽  
Author(s):  
Xiu Wei Jia ◽  
Min Zhi Rong ◽  
Ming Qiu Zhang

A novel flame retardant polymethylsilsesquioxane (PMSQ) was successfully obtained via combination of non-hydrolytic and hydrolytic sol-gel routes. Chemical structure of the resultant PMSQ was determined by nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectrometry and powder X-ray diffraction, respectively. All the measurements demonstrated that the product possessed regular structure with chain-to-chain width of 0.87nm and chain thickness of 0.40nm. Weight average molecular weight of PMSQ was measured to be 3.5×105 using gel permeation chromatography. Numerical simulations of the molecular structure suggested that PMSQ should exhibit cis-isotactic configuration and double helical conformation at undisturbed condition.


Author(s):  
Rana Obaidat ◽  
Bashar Al-taani ◽  
Hanan Al-quraan

Objective: Meloxicam is classified as class II corresponding to its high permeability and low solubility (12μg/ml). This study aims to compare the effect of selected polymers on stabilization of amorphous form, and dissolution of meloxicam by preparation of different solid dispersions using selected polymers (chitosan oligomers, polyvinylpyrrolidone K30, and polyethylene glycols).Methods: These solid dispersions were prepared using two different methods; solvent evaporation method for the two molecular weights chitosan carriers (16 and 11KDa) and polyvinylpyrrolidone-K30 and melting method for the two different molecular weights polyethylene glycol (4000 and 6000). The physicochemical properties of solid dispersions were analyzed using differential scanning calorimetry, Fourier transform infra-red analysis, Powder X-ray diffraction, and scanning electron microscopy. Selected dispersions were then compared to two selected marketed drugs (Mobic® and Moven®).Results: Best dissolution rates were obtained for both polyvinylpyrrolidone-K30 and polyethylene glycol 6000, followed by chitosan 16 kDa, chitosan 11 kDa, and polyethylene glycol 4000. Increasing polymeric ratio increased dissolution rate except for chitosan. Precipitation of the drug as amorphous form occurred in chitosan and polyvinylpyrrolidone-K30 dispersions, while no change in crystallinity obtained for polyethylene glycol dispersions. Failure of polyvinylpyrrolidone-K30 in the maintenance of stability during storage time was observed while re-crystallization occurred in chitosan-based dispersions, which ends with preferences to polyethylene glycol dispersions. After comparing the release of selected dispersions with the two selected polymers; all dispersions got a higher release than that of the two marketed drugs release.Conclusion: The dissolution profile of meloxicam has been increased successfully in a reproducible manner.


1932 ◽  
Vol 5 (2) ◽  
pp. 136-140
Author(s):  
H. Staudinger ◽  
W. Feisst

Abstract The molecular concept in organic chemistry is based upon the fact that the molecules, whose existence is proved by vapor density determinations, enter into chemical reactions as the smallest particles. If now it is assumed that organic molecular colloids like rubber are dissolved in dilute solution in molecular form then it must be proved that in the chemical transposition of macromolecules as well no change in the size of the macromolecules occurs. In the case of hemicolloids, therefore for molecular colloids with an average molecular weight of 1000 to 10,000, this has been proved by the reduction of polyindenes, especially of polysterenes, to hydroproducts with the same average molecular weight, and also by the fact that cyclorubbers do not change their molecular weight upon autoöxidation. The molecular weights of hemi-colloidal hydrocarbons are therefore invariable. This is much more difficult to prove in the case of rubber, although there are many more ways in which unsaturated rubber can be transposed than the stable polysterenes, polyindenes, and poly cyclorubbers. In most of the reactions with rubber, as in its action with nitrosobenzene, oxidizing agents, hydrogen halides, and halogens, an extensive decomposition takes place as a result of the instability of the molecule, which is referred to in another work. Therefore derivatives of rubber are not formed, but derivatives of hemi-colloidal decomposition products. The catalytic reduction of rubber in the cold appears to be the most suitable process of making it react without changing its molecular size in order to prove that in a chemical transposition its molecular weight remains the same.


2019 ◽  
Vol 91 (6) ◽  
pp. 957-965
Author(s):  
Meltem Akkulak ◽  
Yasemin Kaptan ◽  
Yasar Andelib Aydin ◽  
Yuksel Avcibasi Guvenilir

Abstract In this study, rice husk ash (RHA) silanized with 3-glycidyloxypropyl trimethoxysilane was used as support material to immobilize Candida antarctica lipase B. The developed biocatalyst was then utilized in the ring opening polymerization (ROP) of ε-caprolactone and in situ development of PCL/Silica nanohybrid. The silanization degree of RHA was determined as 4 % (w) by thermal gravimetric analysis (TGA). Structural investigations and calculation of molecular weights of nanohybrids were realized by proton nuclear magnetic resonance (1H NMR). Crystallinity was determined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Scanning Electron Microscopy (SEM) was used for morphological observations. Accordingly, the PCL composition in the nanohybrid was determined as 4 %, approximately. Short chained amorphous PCL was synthesized with a number average molecular weight of 4400 g/mol and crystallinity degree of 23 %. In regards to these properties, synthesized PCL/RHA composite can find use biomedical applications.


1986 ◽  
Vol 39 (4) ◽  
pp. 557 ◽  
Author(s):  
LJ Porter

The number-average molecular weights (Mn) and weight-average molecular weights (Mw) for proanthocyanidin polymers (condensed tannins) have been measured by vapour pressure osmometry and low-angle laser light-scattering measurements in methanol. These confirm earlier findings (based on gel permeation chromatography of the peracetate derivatives of these polymers) that they are polydisperse. The results also indicate that the incidence of branching in the polymer chains increases as the average chain length increases.


1998 ◽  
Vol 76 (11) ◽  
pp. 1699-1706 ◽  
Author(s):  
Jonathan Z Knaul ◽  
Mohammad R Kasaai ◽  
V Tam Bui ◽  
Katherine AM Creber

Starting from a chitosan sample with a degree of deacetylation of 71%, three separate sample sets were generated by successive deacetylation and reacetylation processes. The degree of deacetylation of samples was determined by UV spectrometry supported by thermogravimetric analysis. The molecular weight of chitosan samples was determined in a solvent system of 0.25 M CH3COOH/0.25 M CH3COONa, using viscometry and gel permeation chromatography (GPC) with a TSK-gel column. The first set of samples had a similar degree of deacetylation (DDA) but differing molecular weights. The second set of samples had a similar molecular weight but differing degrees of deacetylation. The Mark-Houwink-Sakurada constants used for the determination of viscosity average molecular weight and the universal calibration of the GPC system were K = 1.40 × 10-4 dL/g and a = 0.83. Results showed that molecular weights determined from both techniques are in good accord only at lower degrees of deacetylation. This may be attributed to the fact that the chemical structure of chitosan samples could have been largely altered with increasing or decreasing degree of deacetylation. Nevertheless, the trend with which the molecular weights vary with the deacetylation time is consistent over a limited DDA range. A literature review of molecular weight analysis of chitosan is included.Key words: chitosan, degree of deacetylation, gel permeation chromatography, molecular weight, viscometry.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1543
Author(s):  
Juan Li ◽  
Zhaohua Liang ◽  
Chengtao Gao ◽  
Shanshan Luo ◽  
Shaowen Huang ◽  
...  

Two kinds of organic phosphate nucleating agent (NA-11 and NA-21) were used in PP with different molecular weights through the melt extrusion method. The dispersibility of the nucleating agents in PP, and the effect of the nucleating agents on the molecular weight, rheological behavior and crystallization behavior of PP were investigated. SEM and TEM analysis showed that the average radius of the dispersed particles (nucleating agents) was larger in LPP than that in HPP. The good dispersion of NA-21 also created more nucleation embryos for the adsorption of polypropylene molecules than the agglomerated NA-11. The gel permeation chromatography (GPC) analysis showed that the average molecular weight of HPP and LPP both decreased with the addition of a nucleating agent. The rotational rheometer and capillary rheometer analysis showed that the effect of NA-21 on reducing intermolecular entanglement was more significant, whether in HPP or LPP. The addition of NA-21 had less elastic energy storage and better flow stability, and could be processed at a higher speed. Simultaneously, the relaxation time in the blends with LPP was shorter than that with HPP. It was found that the crystallinity and nucleation efficiency of HPP/nucleating agent blends increased remarkably, while there was a barely perceptible increase in LPP/nucleating agent blends.


Author(s):  
Jiankun Li ◽  
Zegang Zong ◽  
Dehua Hou ◽  
Bojun Tu ◽  
Weilan Xue ◽  
...  

In this work, a series of poly(Hexanediol adipate)(PHA) samples (103<Mn<104) with narrow molecular weight distribution were prepared by the polymerization between adilic acid and 1,6-hexandiol. End-group analysis was applied to determine the number average molecular weight (Mn) of PHA. Gel permeation chromatography (GPC) was employed to obtain the average molecular weights (Mn, Mv, Mw).The intrinsic viscosity of the samples in the tetrahydrofuran (THF) solution was determined at 298 K by the dilution extrapolation method and the one-point method. The relationship between the intrinsic viscosity and the molecular weight for PHA was studied by the Mark-Houwink-Sakurada (MHS) equation, and the parameters of equation were determined.


2002 ◽  
Vol 58 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Urszula Rychlewska ◽  
Beata Warżajtis

The compounds studied are methyl ester, amide and methylamide derivatives of (R,R)-O,O′-dibenzoyl tartaric acid. The molecules adopt the planar T conformation of the four-carbon chain with the terminal C=O bonds situated antiperiplanar with respect to the nearest C*—O bond. All investigated molecules occupy a twofold symmetry site in the crystal, including the mono(N-methylamide) monomethylester which lacks the C 2 molecular symmetry. Connected with this is the static disorder in which the methylester and the N-methylamide groups replace each other and isostructuralism within the methylester/methylamide series. (R,R)-O,O′-Dibenzoyltartaric acid diamides [(R,R)-O,O′-dibenzoyl-2,3-dihydroxybutanediamides], both primary and secondary, form hydrogen-bond aggregation patterns typical for amides, despite the presence of other hydrogen-bond acceptors in the molecule. However, in primary amides such packing leads to the creation of homeotypic crystal structures in which structural voids are filled by cyclic solvent molecules (pyridine, 1,4-dioxane). The presence of polyamide ladders, consisting of `fused' hydrogen-bond rings, seems to be responsible for the low solubility and high melting point of these substances.


Sign in / Sign up

Export Citation Format

Share Document