Thermal Stability of Reactively Sputtered TiN on InP as a Diffusion Barrier

1992 ◽  
Vol 260 ◽  
Author(s):  
Zhengda Pang ◽  
Mohamed Boumerzoug ◽  
Roman V. Kruzelecky ◽  
Peter Mascher ◽  
John G. Simmons

ABSTRACTThe stability of rcactively sputtered TiN films on InP for application as a diffusion barrier has been examined using electrical measurements, Auger profiling and scanning electron microscopy (SEM). The samples were subjected to rapid-thermal-annealing (RTA) in a N2 atmosphere at temperatures between 400°C and 900°C. The SEM pictures of “as deposited” and RTA stoichiometric films show that the morphology is smooth, fine-grained and stable until 800°C. Auger depth profiling shows little interdiffusion between TiN and InP for RTA below 800°C. Annealing at temperatures of about 700°C reduces the sheet resistance of TiN relative to the “as-deposited” films by about 50%. Annealing at temperatures above 800°C results in a large sheet resistance. This may be associated with the deterioration of the TiN/InP morphology at high anneal temperatures as observed by SEM.

1994 ◽  
Vol 337 ◽  
Author(s):  
Zhengda Pang ◽  
Mohamed Boumerzoug ◽  
Peter Mascher ◽  
John G. Simmons

ABSTRACTWNX thin films were deposited at room temperature on (100) n-type GaAs substrates by rf reactive sputtering of a high purity W target in Ar/N2 gas mixtures. Deposition parameters such as the rf power, the ratio of gas flows, and the total pressure can be optimized for the preparation of uniform and low resistivity WNX thin films. The W:N ratio in the as-deposited WNX films was determined using Auger spectroscopy and the morphology was examined by scanning electron microscopy (SEM).The WNx/GaAs samples were subjected to rapid thermal annealing in an N2 atmosphere at temperatures between 400°C and 800°C. The thermal stability of these structures was examined using electrical measurements and Auger profiling . The results are correlated with the properties of as-deposited films and the influence of various processing parameters will be discussed.


1990 ◽  
Vol 181 ◽  
Author(s):  
Yow-Tzong Shy ◽  
Shyam P. Murarka ◽  
Carlton L. Shepard ◽  
William A. Lanford

ABSTRACTBilayers of Cu with TiSi2 and TaSi2 were tested by furnace annealing at temperatures from 200 to 500°C. Rutherford Back Scattering (RBS) technique was used to investigate the interaction between various films and determine the stability of Cu on silicide structures. The sheet resistance was also monitored. The results show that Cu on TiSi2 and TaSi2 structures are extremely stable structures at annealing temperatures in the range of room temperature to 500 °C. In such structures, therefore, there will not be a need of any diffusion barrier between Cu and the silicide films.


1999 ◽  
Vol 563 ◽  
Author(s):  
K. Y Lu ◽  
J. S. Chen

AbstractWe have studied the effect of a Ti interlayer on the behavior of a TiN diffusion barrier for Al and Cu metallizations. Thermal stability of Al/Ti/TiN/<Si> and Al/TiN/<Si> samples annealed at 400–600°C for 30 min was investigated using Auger electron spectroscopy (AES), glancing angle X-ray diffraction and scanning electron microscopy (SEM). Sheet resistance was measured for electrical characterization.After annealing at 400°C and 500°C, the AI/TiN/<Si> samples exhibited the same sheet resistance as the as-deposited one, while the sheet resistances of the Al/Ti/TiN/<Si> samples increased upon annealing. After annealing at 600°C, pyramidal pits developed on the surface of the Al/TiN/<Si> sample, but not on the Al/Ti/TiN/<Si> sample. Sheet resistance measurements for the 600°C-annealed Al/TiN/<Si> sample resulted in a more scattered distribution and a higher average value than for the Al/Ti/TiN/<Si> sample. The results clearly indicate that the performance of the TiN barrier layer is significantly improved by including a thin Ti film between the TiN and the Al. The Ti interlayer also improves the TiN barrier performance for the Cu metallization system.


1996 ◽  
Vol 441 ◽  
Author(s):  
Han-Yu Tseng ◽  
Aris Christou ◽  
Dan Young ◽  
Ted Tessner ◽  
Jon Orloff

AbstractIn this study, the relation between interdiffusion in Al/ TiN thin film couples and diffusion barrier stability has been investigated. The TiN diffusion barrier was deposited by reactive sputtering in an Ar-N2 gas mixture. The stoichiometry of TiN was achieved by varying the nitrogen-to-argon ratio in the sputtering gas. Interdiffiusion occurred after annealing for 30 minutes at 475°C and 575°C. Diffusion processes and interfacial reactions with respect to TiN stoichiometry were investigated via Auger Electron Spectroscopy (AES) depth profiling and X-ray diffraction (XRD). The barrier reliability with respect to the stoichiometry changes was established; nitrogen-deficient TiN films result in a high degree of interdiffiusion and decomposition at annealing temperatures of 475°C and 575°C. AI3Ti and AlN intermetallic compounds were formed at the interfaces. The sheet resistance of Al films was measured by four-point probe method. Resistance increases for all the annealed films were due to interdiffusion between Al and TiN. The degree of interdiffusion was analyzed by using AES and XRD.


2004 ◽  
Vol 812 ◽  
Author(s):  
L. Gao ◽  
J. Gstöttner ◽  
R. Emling ◽  
Ch. Linsmeier ◽  
M. Balden ◽  
...  

AbstractThe physical and electrical properties as well as thermal stability of reactively sputtered titanium nitride (TiN) film serving as a diffusion barrier was studied for silver (Ag) metallization. The thermal stability of Ag/TiN metallizations on Si with 12-nm-thick TiN barriers, as-deposited and after annealing at 300-650°C in N2/H2 for 30 min, was investigated with sheet resistance measurement, X-ray diffraction, focused ion beam-scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. According to electrical measurement no change of sheet resistance was found after annealing at 600°C, but an abrupt rise appeared at 650°C annealing. There are two causes by which the Ag/TiN/Si structure became degraded. One is agglomeration of the silver layer, and the other is oxidation and diffusion which are also associated problems during thermal annealing.


1994 ◽  
Vol 337 ◽  
Author(s):  
Shyam P. Murarka ◽  
Sen-Hou Ko ◽  
Pei-Jun Ding ◽  
William A. Lanford

ABSTRACTTiH2 has been considered as a diffusion barrier and adhesion promoter between oxide and Cu. This phase is formed by reaction of Ti with hydrogen during rapid thermal annealings. In this investigation the stability of TiH2 on PECVD and thermal oxides has been studied during Ar anneal at 400 and 500°C. X-ray diffraction, sheet resistance measurements, RBS, and nuclear reaction technique to profile hydrogen have been used in this study. The results indicate that the stability of TiH2 is dependent on the nature of the oxide, for example, the water concentration and the density of the oxide and on the temperature of the anneal. These results will be discussed in view of the applicability of TiH2 which has a low thin film electrical resistivity of about 100 μΩ-cm.


2002 ◽  
Vol 716 ◽  
Author(s):  
G.Z. Pan ◽  
E.W. Chang ◽  
Y. Rahmat-Samii

AbstractWe comparatively studied the formation of ultra thin Co silicides, Co2Si, CoSi and CoSi2, with/without a Ti-capped and Ti-mediated layer by using rapid thermal annealing in a N2 ambient. Four-point-probe sheet resistance measurements and plan-view electron diffraction were used to characterize the silicides as well as the epitaxial characteristics of CoSi2 with Si. We found that the formation of the Co silicides and their existing duration are strongly influenced by the presence of a Ti-capped and Ti-mediated layer. A Ti-capped layer promotes significantly CoSi formation but suppresses Co2Si, and delays CoSi2, which advantageously increases the silicidation-processing window. A Ti-mediated layer acting as a diffusion barrier to the supply of Co suppresses the formation of both Co2Si and CoSi but energetically favors directly forming CoSi2. Plan-view electron diffraction studies indicated that both a Ti-capped and Ti-mediated layer could be used to form ultra thin epitaxial CoSi2 silicide.


2001 ◽  
Vol 40 (Part 1, No. 11) ◽  
pp. 6307-6310
Author(s):  
Jong-Uk Bae ◽  
Dong Kyun Sohn ◽  
Ji-Soo Park ◽  
Chang Hee Han ◽  
Jin Won Park ◽  
...  

1995 ◽  
Vol 391 ◽  
Author(s):  
W.F. Mcarthur ◽  
K.M. Ring ◽  
K.L. Kavanagh

AbstractThe feasibility of Si-implanted TiN as a diffusion barrier between Cu and Si was investigated. Barrier effectiveness was evaluated via reverse leakage current of Cu/TixSiyNz/Si diodes as a function of post-deposition annealing temperature and time, and was found to depend heavily on the film composition and microstructure. TiN implanted with Si28, l0keV, 5xl016ions/cm2 formed an amorphous ternary TixSiyNz layer whose performance as a barrier to Cu diffusion exceeded that of unimplanted, polycrystalline TiN. Results from current-voltage, transmission electron microscopy (TEM), and Auger depth profiling measurements will be presented. The relationship between Si-implantation dose, TixSiyNz structure and reverse leakage current of Cu/TixSiyNz/Si diodes will be discussed, along with implications as to the suitability of these structures in Cu metallization.


Sign in / Sign up

Export Citation Format

Share Document