Effect of a Titanium Interlayer on the Performance of the Titanium Nitride Diffusion Barrier

1999 ◽  
Vol 563 ◽  
Author(s):  
K. Y Lu ◽  
J. S. Chen

AbstractWe have studied the effect of a Ti interlayer on the behavior of a TiN diffusion barrier for Al and Cu metallizations. Thermal stability of Al/Ti/TiN/<Si> and Al/TiN/<Si> samples annealed at 400–600°C for 30 min was investigated using Auger electron spectroscopy (AES), glancing angle X-ray diffraction and scanning electron microscopy (SEM). Sheet resistance was measured for electrical characterization.After annealing at 400°C and 500°C, the AI/TiN/<Si> samples exhibited the same sheet resistance as the as-deposited one, while the sheet resistances of the Al/Ti/TiN/<Si> samples increased upon annealing. After annealing at 600°C, pyramidal pits developed on the surface of the Al/TiN/<Si> sample, but not on the Al/Ti/TiN/<Si> sample. Sheet resistance measurements for the 600°C-annealed Al/TiN/<Si> sample resulted in a more scattered distribution and a higher average value than for the Al/Ti/TiN/<Si> sample. The results clearly indicate that the performance of the TiN barrier layer is significantly improved by including a thin Ti film between the TiN and the Al. The Ti interlayer also improves the TiN barrier performance for the Cu metallization system.

1999 ◽  
Vol 563 ◽  
Author(s):  
J. L. Wang ◽  
J. S. Chen

AbstractTiB2, films deposited by co-sputtering from a boron and a TiB, target are evaluated as the diffusion barrier for Cu metallization. Material characteristics of the TiB, films and metallurgical interactions of the Cu/TiB2/<Si> system annealed at 400−700°C for 30 min, in a 80%Ar+20%H2 flow, were investigated by glancing angle X-ray diffraction, Auger electron spectroscopy (AES), and scanning electron microscopy (SEM). Sheet resistance was measured for electrical characterization.The composition and resistivity of the sputtered TiB1 films varied with the bias applied on the substrate. To obtain a low film resistivity, a negative bias of 200V was applied during sputtering. The resulting TiB2 film is nanocrystalline with a resistivity of 300 μΩcm. After copper deposition, the Cu/TiB2/<Si> samples have a constant sheet resistance after annealing up to 600°C for 30min. The overall sheet resistance of the sample increases by five orders of magnitude after annealing at 700°C, and scanning electron micrographs reveal that the sample surface is severely deteriorated after annealing at 700°C.


1996 ◽  
Vol 441 ◽  
Author(s):  
G. Sade ◽  
J. Pelleg ◽  
A. Grisaru

AbstractThe TiB2/TiSi2 bilayer is considered as a diffusion barrier in metallization system with Cu. The TiSi2 sublayer serves as a contact and also as an additional diffusion barrier against boron, which outdiffuses from TiB2 at high temperature annealing. The attempts to form TiSi2 by vacuum annealing of TiB2/Ti film, which was obtained by co-sputtering from elemental targets are described. The composition and the structure of the films were analyzed by Auger electron spectroscopy (AES), X-ray diffraction (XRD) and high-resolution cross-sectional TEM (HRXTEM). The Cu/TiB2/(Ti-Si)/n-Si contacts were investigated using current-voltage (I–V) on Schottky diode structures, which were prepared on n-type Si (100). The thermal stability of the TiB2/(Ti-Si) barrier was studied by structural and electrical analysis.It was observed that the lowest sheet resistance of 5.1 Ω/‪ was obtained after 850 °C annealing for 30 min, however the resulting Ti-Si layer is practically still amorphous and contains only a very small fraction of C54 TiSis in the form of microcrystallites. This layer also contained Ti5Si3 as indicated by XRD. The barrier height of Cu/TiB2/(Ti-Si)/n-Si Schottky diodes is ˜0.6 V and it does not show significant changes in the range 400–700 °C. Electrical monitoring is a very effective tool to detect deterioration of the barrier. No penetration is observed by AES at 700 °C, while the I–V curve shows changes in properties.


1982 ◽  
Vol 18 ◽  
Author(s):  
R. J. Schutz

The effectiveness of a thin (360Å) layer of reactively sputtered TiN as a diffusion barrier between aluminum and two silicides (PtSi and CoSi2) was evaluated. The chemical composition, structural phases and electrical properties of silicide/Al and silicide/TiN/Al contacts to n-type silicon were studied by Rutherford backscattering spectroscopy, glancing angle X-ray diffraction and Schottky barrier height measurements respectively. The results show that TiN is an effective barrier in these two systems up to at least 450°C, the typical temperature at which aluminum contacts are sintered.


2013 ◽  
Vol 347-350 ◽  
pp. 1148-1152
Author(s):  
Yan Nan Zhai ◽  
Hun Zhang ◽  
Kun Yang ◽  
Zhao Xin Wang ◽  
Li Li Zhang

In order to increase the failure temperature of Zr-N diffusion barrier for Cu, the effect of insertion of a thin Zr layer into Zr-N film on Zr-N diffusion barrier performance in Cu metallization was investigated by means of X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and 4-point probe technique. XRD,SEM ,AES and FPP results show that the insertion of a thin Zr layer into Zr-N film improves barrier properties significantly when the ZrN / Zr/ZrN barrier layers are deposited by RF reactive magnetron sputtering and Zr-N(10nm)/Zr (5nm)/Zr-N(10nm) barrier tolerates annealing at 700°C for 1 h without any breaking and agglomerating Cu film. This interpretes that insertion of a thin Zr layer into Zr-N film is attributed to the densification of grain boundaries in ZrN/Zr/ZrN films followed by the reduction of fast diffusion of Cu through ZrN /Zr/ ZrN multilayered films.


1996 ◽  
Vol 449 ◽  
Author(s):  
E. Kamińska ◽  
A. Piotrowska ◽  
M. Guziewicz ◽  
S. Kasjaniuk ◽  
A. Barcz ◽  
...  

ABSTRACTThe formation of n-GaN/Ti ohmic contacts with TiN diffusion barriers has been investigated by electrical measurements, x-ray diffraction and SIMS. It has been shown that the onset of the ohmic behaviour is associated with the thermally induced phase transformation of Ti into TiN at the GaN/Ti interface. It is suggested that the process is accompanied by an increase in the doping level in the semiconductor subcontact region. The presence of a TiN barrier is found to inhibit excessive decomposition of GaN and to confine the reaction between n-GaN and Ti.


2007 ◽  
Vol 990 ◽  
Author(s):  
Prodyut Majumder ◽  
Rajesh Katamreddy ◽  
Christos G Takoudis

ABSTRACTThermally stable, amorphous HfO2 thin films deposited using atomic layer deposition have been studied as a diffusion barrier between Cu and the Si substrate. 4 nm thick as-deposited HfO2 films deposited on Si are characterized with X-ray photoelectron spectroscopy. Cu/HfO2/<Si> samples are annealed at different temperatures, starting from 500 °C, in the presence of N2 atmosphere for 5 min and characterized using sheet resistance, X-ray diffraction and scanning electron microscopy. Ultrathin HfO2 films are found to be effective diffusion barrier between Cu and Si with a high failure temperature of about 750 °C.


2004 ◽  
Vol 812 ◽  
Author(s):  
L. Gao ◽  
J. Gstöttner ◽  
R. Emling ◽  
Ch. Linsmeier ◽  
M. Balden ◽  
...  

AbstractThe physical and electrical properties as well as thermal stability of reactively sputtered titanium nitride (TiN) film serving as a diffusion barrier was studied for silver (Ag) metallization. The thermal stability of Ag/TiN metallizations on Si with 12-nm-thick TiN barriers, as-deposited and after annealing at 300-650°C in N2/H2 for 30 min, was investigated with sheet resistance measurement, X-ray diffraction, focused ion beam-scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. According to electrical measurement no change of sheet resistance was found after annealing at 600°C, but an abrupt rise appeared at 650°C annealing. There are two causes by which the Ag/TiN/Si structure became degraded. One is agglomeration of the silver layer, and the other is oxidation and diffusion which are also associated problems during thermal annealing.


2007 ◽  
Vol 26-28 ◽  
pp. 593-596 ◽  
Author(s):  
You Zhen Li ◽  
Ji Cheng Zhou

Ta-Al-N thin films on Si wafer were prepared by RF reactive magnetron sputtering in a N2/Ar ambient. Then the stacked structures of Cu/Ta-Al-N/Si were prepared and annealed at temperatures varied from 400°C to 900°C for 5 minutes in a N2 ambient tube. Four-point probe (FPP) sheet resistance measurement, Atomic force microscope (AFM), Scanning electron microscope(SEM), Alpha-Step IQ Profilers and X-ray Diffraction(XRD) were used to investigate the composition, morphology and the diffusion barrier properties of the thin films. The results show that with the increasing of Al component, the surface of Ta-Al-N thin-films became finer, the sheet resistance became higher, and after annealing at 800°C/300S FA, Cu diffusion through Ta-Al-N barrier didn’t not occurred. Results show that Ta-Al-N thin-films could act as diffusion barrier for new generation integrated circuits due to its excellent high temperature properties.


1994 ◽  
Vol 337 ◽  
Author(s):  
Shyam P. Murarka ◽  
Sen-Hou Ko ◽  
Pei-Jun Ding ◽  
William A. Lanford

ABSTRACTTiH2 has been considered as a diffusion barrier and adhesion promoter between oxide and Cu. This phase is formed by reaction of Ti with hydrogen during rapid thermal annealings. In this investigation the stability of TiH2 on PECVD and thermal oxides has been studied during Ar anneal at 400 and 500°C. X-ray diffraction, sheet resistance measurements, RBS, and nuclear reaction technique to profile hydrogen have been used in this study. The results indicate that the stability of TiH2 is dependent on the nature of the oxide, for example, the water concentration and the density of the oxide and on the temperature of the anneal. These results will be discussed in view of the applicability of TiH2 which has a low thin film electrical resistivity of about 100 μΩ-cm.


Cerâmica ◽  
2019 ◽  
Vol 65 (374) ◽  
pp. 274-281 ◽  
Author(s):  
S. S. Satpute ◽  
S. R. Wadgane ◽  
S. R. Kadam ◽  
D. R. Mane ◽  
R. H. Kadam

Abstract Y3+ substituted strontium hexaferrites having chemical composition SrYxFe12-xO19 (x= 0.0, 0.5, 1.0, 1.5) were successfully synthesized by sol-gel auto-combustion method. The structural and morphological studies of prepared samples were investigated by using X-ray diffraction technique, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy. The X-ray diffraction pattern confirmed the single-phase hexagonal structure of yttrium substituted strontium ferrite and the lattice parameters a and c increased with the substitution of Y3+ ions. The crystallite size also varied with x content from 60 to 80 nm. The morphology was studied by FE-SEM, and the grain size of nanoparticles ranged from 44 to 130 nm. The magnetic properties were investigated by using vibrating sample magnetometer. The value of saturation magnetization decreased from 49.60 to 35.40 emu/g. The dielectric constant decreased non-linearly whereas the electrical dc resistivity increased with the yttrium concentration in strontium hexaferrite.


Sign in / Sign up

Export Citation Format

Share Document