Interaction of Copper Film with Silicides

1990 ◽  
Vol 181 ◽  
Author(s):  
Yow-Tzong Shy ◽  
Shyam P. Murarka ◽  
Carlton L. Shepard ◽  
William A. Lanford

ABSTRACTBilayers of Cu with TiSi2 and TaSi2 were tested by furnace annealing at temperatures from 200 to 500°C. Rutherford Back Scattering (RBS) technique was used to investigate the interaction between various films and determine the stability of Cu on silicide structures. The sheet resistance was also monitored. The results show that Cu on TiSi2 and TaSi2 structures are extremely stable structures at annealing temperatures in the range of room temperature to 500 °C. In such structures, therefore, there will not be a need of any diffusion barrier between Cu and the silicide films.

2018 ◽  
Vol 924 ◽  
pp. 333-338 ◽  
Author(s):  
Roberta Nipoti ◽  
Alberto Carnera ◽  
Giovanni Alfieri ◽  
Lukas Kranz

The electrical activation of 1×1020cm-3implanted Al in 4H-SiC has been studied in the temperature range 1500 - 1950 °C by the analysis of the sheet resistance of the Al implanted layers, as measured at room temperature. The minimum annealing time for reaching stationary electrical at fixed annealing temperature has been found. The samples with stationary electrical activation have been used to estimate the thermal activation energy for the electrical activation of the implanted Al.


1999 ◽  
Vol 14 (11) ◽  
pp. 4200-4207 ◽  
Author(s):  
Keiichiro Oh-ishi ◽  
Zenji Horita ◽  
David J. Smith ◽  
Ruslan Z. Valiev ◽  
Minoru Nemoto ◽  
...  

A Ni–Al–Cr alloy with an initial grain size of ∼60 μm was subjected to torsion straining to a strain of ∼7 at room temperature, thereby reducing the grain size to ∼34 nm. Similar torsion straining with samples of pure Cu and pure Ni gave grain sizes of ∼170 and ∼130 nm, respectively. Inspection of the Ni–Al–Cr alloy after torsion straining revealed highly strained regions containing dislocations associated with lattice distortions but with an absence of any Ni3Al ordered phase. The ultrafine grains in the Ni–Al–Cr alloy were extremely stable at high temperatures, and it was possible to retain a grain size of less than 100 nm after annealing at temperatures up to ∼900 K. By contrast, there was rapid grain growth in the samples of pure Cu and Ni at annealing temperatures in the vicinity of ∼500 K. The stability of the grains in the Ni–Al–Cr alloy is attributed to the formation of a Ni3Al-based ordered phase after annealing at ∼650–700 K. The presence of this phase also leads to an apparent negative slope in the standard Hall–Petch relationship.


1970 ◽  
Vol 48 (2) ◽  
pp. 229-235 ◽  
Author(s):  
J. M. Shannon ◽  
R. Tree ◽  
G. A. Gard

Sheet resistance and Hall measurements have been made on boron layers implanted into [Formula: see text] and [Formula: see text] silicon at energies between 15 and 60 KeV. The features of the annealing curves are discussed. Hall measurements indicate that the large reverse annealing effect observed in several samples implanted at room temperature is due to a rapid fall off in the density of an acceptor level between annealing temperatures of 400 and 600 °C. It is suggested that this level is associated with substitutional boron.Conducting layers formed by implants at high doses (6 × 1015 cm−2) and low annealing temperatures are shown to be sensitive to specimen temperature during implantation and dose rate. This sensitivity is associated with the formation of an amorphous layer.The conductivity of layers implanted at temperatures of 400–500 °C is shown to be lower than corresponding room temperature implants followed by annealing.


1992 ◽  
Vol 260 ◽  
Author(s):  
Y. -T. Shy ◽  
S. P. Murarka ◽  
A. R. Sitaram ◽  
P.-J. Ding ◽  
W. A. Lanford

ABSTRACTCopper is being investigated for application as multi-level interconnection metal in silicon ultra-large-scale integration (ULSI). On the other hand, COSi2 is being tested for application as contacts in sub-half micron ULSI circuits. Copper will thus be used on COSi2 to bring the electrical connection to the outside world. In this investigation we have therefore studied the interactions of copper with CoSi2 employing sheet resistance measurements (four-point probe), Rutherford back scattering (RBS), and X-ray diffraction (XRD). In addition the stability of the Schottky diodes, n-Si/CoS2/Cu, has been investigated as a function of the heat treatment in the range of room temperature to 600° C in argon-3% hydrogen mixture gas ambient. Both the measurements of the analytical and electrical characteristics show that Cu on n-Si/CoSi2 is stable at least up to a 30 minutes anneal at 600°C in argon-3% hydrogen medium. These results will be presented and discussed.


2020 ◽  
Vol 70 (3) ◽  
pp. 340-349
Author(s):  
Jingkui Li ◽  
Yanan Wang ◽  
He Tian ◽  
Dawei Qi ◽  
Ruoying Wang

Abstract It can be helpful for selected applications to improve the functionality of wood by compounding nano-metal materials with wood, endowing the wood surface with certain physical properties, for example, metallicity, electrical conductivity, and hydrophobicity. Therefore, in this study, a thin copper film was deposited on the surface of Pinus sylvestris L. var. mongholica Litv. veneer by magnetron sputtering. The film was applied at both room temperature and 200°C to obtain nano-copper–wood composites. The physical properties of wood-based nano-metal composites were characterized. The results indicated that the wood veneer metallization had no effect on the crystallization zone of wood; there were still wood cellulose characteristic peaks, but the intensity of the diffraction peak decreased. At the same time, there were characteristic diffraction peaks of copper. The mechanical properties of the wood veneer surface changed greatly; the surface of copper-plated wood veneer had good electrical conductivity and the wettability of the wood surface transformed from hydrophilic to hydrophobic. When the base temperature was 200°C, not only was the sheet resistance of the sample with coating time of 15 minutes about 4.6 times that of the sheet resistance of the sample at room temperature, but also the quality of the copper film on the wood surface was better than that at room temperature. The copper film was mainly composed of small particles with a compact arrangement.


1992 ◽  
Vol 260 ◽  
Author(s):  
Zhengda Pang ◽  
Mohamed Boumerzoug ◽  
Roman V. Kruzelecky ◽  
Peter Mascher ◽  
John G. Simmons

ABSTRACTThe stability of rcactively sputtered TiN films on InP for application as a diffusion barrier has been examined using electrical measurements, Auger profiling and scanning electron microscopy (SEM). The samples were subjected to rapid-thermal-annealing (RTA) in a N2 atmosphere at temperatures between 400°C and 900°C. The SEM pictures of “as deposited” and RTA stoichiometric films show that the morphology is smooth, fine-grained and stable until 800°C. Auger depth profiling shows little interdiffusion between TiN and InP for RTA below 800°C. Annealing at temperatures of about 700°C reduces the sheet resistance of TiN relative to the “as-deposited” films by about 50%. Annealing at temperatures above 800°C results in a large sheet resistance. This may be associated with the deterioration of the TiN/InP morphology at high anneal temperatures as observed by SEM.


1990 ◽  
Vol 213 ◽  
Author(s):  
J.T. Kim ◽  
R. Gibala

ABSTRACTThe present work was undertaken to understand the transition in slip direction In [001] oriented NiAl as a function of temperature. Single crystals of [001] NiAl were deformed at room temperature to produce <111> dislocations and were subsequently annealed at various temperatures in order to see the effect of temperature on the stability of the <111> dislocation. These results were compared with corresponding dislocation substructures of specimens deformed directly at high temperatures. During annealing <111> dislocations are dissociated into <001>+<110> dislocations at 773–923 K. It is also observed that <111> dislocations can be dissociated into <001>+<110> dislocations during deformation in the vicinity of the transition temperature of around 773 K. The quantitative details of these changes depend on deformation or annealing temperatures.


1994 ◽  
Vol 337 ◽  
Author(s):  
Shyam P. Murarka ◽  
Sen-Hou Ko ◽  
Pei-Jun Ding ◽  
William A. Lanford

ABSTRACTTiH2 has been considered as a diffusion barrier and adhesion promoter between oxide and Cu. This phase is formed by reaction of Ti with hydrogen during rapid thermal annealings. In this investigation the stability of TiH2 on PECVD and thermal oxides has been studied during Ar anneal at 400 and 500°C. X-ray diffraction, sheet resistance measurements, RBS, and nuclear reaction technique to profile hydrogen have been used in this study. The results indicate that the stability of TiH2 is dependent on the nature of the oxide, for example, the water concentration and the density of the oxide and on the temperature of the anneal. These results will be discussed in view of the applicability of TiH2 which has a low thin film electrical resistivity of about 100 μΩ-cm.


1961 ◽  
Vol 06 (03) ◽  
pp. 435-444 ◽  
Author(s):  
Ricardo H. Landaburu ◽  
Walter H. Seegers

SummaryAn attempt was made to obtain Ac-globulin from bovine plasma. The concentrates contain mostly protein, and phosphorus is also present. The stability characteristics vary from one preparation to another, but in general there was no loss before 1 month in a deep freeze or before 1 week in an icebox, or before 5 hours at room temperature. Reducing agents destroy the activity rapidly. S-acetylmercaptosuccinic anhydride is an effective stabilizing agent. Greatest stability was at pH 6.0.In the purification bovine plasma is adsorbed with barium carbonate and diluted 6-fold with water. Protein is removed at pH 6.0 and the Ac-globulin is precipitated at pH 5.0. Rivanol and alcohol fractionation is followed by chromatography on Amberlite IRC-50 or DEAE-cellulose. The final product is obtained by isoelectric precipitation.


2002 ◽  
Vol 716 ◽  
Author(s):  
G.Z. Pan ◽  
E.W. Chang ◽  
Y. Rahmat-Samii

AbstractWe comparatively studied the formation of ultra thin Co silicides, Co2Si, CoSi and CoSi2, with/without a Ti-capped and Ti-mediated layer by using rapid thermal annealing in a N2 ambient. Four-point-probe sheet resistance measurements and plan-view electron diffraction were used to characterize the silicides as well as the epitaxial characteristics of CoSi2 with Si. We found that the formation of the Co silicides and their existing duration are strongly influenced by the presence of a Ti-capped and Ti-mediated layer. A Ti-capped layer promotes significantly CoSi formation but suppresses Co2Si, and delays CoSi2, which advantageously increases the silicidation-processing window. A Ti-mediated layer acting as a diffusion barrier to the supply of Co suppresses the formation of both Co2Si and CoSi but energetically favors directly forming CoSi2. Plan-view electron diffraction studies indicated that both a Ti-capped and Ti-mediated layer could be used to form ultra thin epitaxial CoSi2 silicide.


Sign in / Sign up

Export Citation Format

Share Document