Growth of Ge-on-Si Structures using Remote Plasma-Enhanced Chemical Vapor Deposition

1992 ◽  
Vol 281 ◽  
Author(s):  
Rong Z. Qian ◽  
D. Kinosky ◽  
A. Mahajan ◽  
S. Thomas ◽  
J. Fretwell ◽  
...  

ABSTRACTRemote Plasma-enhanced Chemical Vapor Deposition (RPCVD) has been successfully used to grow GexSi1−x/Si (x = 0.1 – 1.0) heteroepitaxial structures at low temperatures (∼450°C). This technique utilizes a noble gas (Ar or He) r-f plasma to decompose reactant gases (SiH4 and GeH4) and drive the chemical deposition reactions in the gas phase as well as on the substrate surface. Growth of pure Ge on Si is of great interest because it provides a promising technique for making suitable low-cost substrates for thin-film Ge photodetectors as well as GaAs devices on Si substrates. The realization of these applications depends on the ability to grow high-quality epitaxial Ge layers on Si substrates. Since GaAs is lattice matched to Ge, growth of Ge layers on Si substrates with good crystalline perfection would permit the integration of GaAs and Si devices. Islanding was observed after the growth of pure Ge films directly on Si(100) for a wide range of plasma powers (7W ∼ 16W) in RPCVD. Cross-sectional TEM analysis showed that the islands have complicated facet structures, including {311} planes. Graded Gex Si1−x buffer layers with different Ge profiles have been used prior to the growth of Ge. It was found that uniform Ge films can be obtained using a buffer with an abrupt Ge profile, and the dislocation density in the Ge film decreases with increasing distance from the substrate.

1991 ◽  
Vol 223 ◽  
Author(s):  
T. Hsu ◽  
R. Qian ◽  
D. Kinosky ◽  
J. Irby ◽  
B. Anthony ◽  
...  

ABSTRACTLow temperature heteroepitaxial growth of Si1−xGex films with mole fractions “x” ranging from 0.07 to 0.72 on Si(100) has been achieved by Remote Plasma-enhanced Chemical Vapor Deposition (RPCVD) at substrate temperatures of 305°C and 450°C. Reflection High Energy Electron Diffraction (RHEED), Transmission Electron Microscopy (TEM), and Secondary Ion Mass Spectroscopy (SIMS) were employed to characterize the crystallinity, composition and interfacial sharpness. The Si1−xGex films with thickness below the critical layer thickness were confirmed to have excellent crystallinity with defect density below the sensitivity of TEM analysis (105 cm−2). The Ge profile, from SIMS analysis, in a Si/Si0.8Ge0.2/Si/Si0.82Ge0.18 multilayer structure was found to have a transition width of 30Å/decade, which is the resolution limit of SIMS analysis. There is no Ge segregation observed at the Si/Si1−xGex interface. A superlattice structure with 24 pairs of Si(60Å)/Si0.8Ge0.2 (60Å) layers has been successfully grown by RPCVD at 450°C. From cross-sectional TEM analysis, very low defect densities and abrupt Ge transitions were confirmed.


2006 ◽  
Vol 11-12 ◽  
pp. 265-268
Author(s):  
T. Kurimoto ◽  
Yuichiro Kuroki ◽  
Kanji Yasui ◽  
Masasuke Takata ◽  
Tadashi Akahane

The heteroepitaxial growth of 3C-SiC films on Si(100) substrates by the hot-mesh chemical vapor deposition (HM-CVD) method using monomethylsilane as a source gas was investigated. From the results of X-ray diffraction spectra, 3C-SiC crystal was epitaxially grown on Si substrates at substrate temperatures above 750°C. The SiC/Si interface was observed by cross-sectional scanning electron microscopy, and was confirmed to be void-free and smooth. The density of hydrogen radicals supplied to the substrate surface during the growth was also estimated measuring the optical absorbance change of tungsten phosphate glass plates. From the dependence of the growth rate on substrate temperature, the mechanism of SiC film growth by HM-CVD was considered.


1991 ◽  
Vol 235 ◽  
Author(s):  
R. Qian ◽  
I. Chung ◽  
D. Kinosky ◽  
T. Hsu ◽  
J. Irby ◽  
...  

ABSTRACTRemote Plasma-enhanced Chemical Vapor Deposition (RPCVD) has been used to grow GexSi1−x/Si heteroepitaxial thin films at low temperatures (∼450°C). In situ RHEED has been used to confirm that smooth, single crystal heteroepitaxial films can be grown by RPCVD. Plan-view and cross-sectional TEM have been employed to study the microstructure of the heteroepitaxial films. Lattice imaging high resolution TEM (HRTEM) has shown perfect epitaxial lattice alignment at the heterojunction interfaces. GexSi1−x/Si films which exceed their CLT's appreciably show dense Moiré fringes under plan-view TEM. The spacings between the fringes have been used to estimate the relaxed lattice constants. In addition to the inhomogeneous strain observed in-XTEM, Selected Area electron Diffraction (SAD) analysis of the interfaces displays two split patterns. The spacings between the diffraction spots have been used to calculate the lattice constants in the epitaxial films in different crystal directions, which agree very well with the prediction by Vegard's law as well as the estimate from plan-view TEM analysis. HRTEM analysis also reveals the crystallographic nature of the interfacial misfit dislocations in the relaxed films.


2006 ◽  
Vol 21 (12) ◽  
pp. 3205-3209 ◽  
Author(s):  
A. Conde-Gallardo ◽  
M. Guerrero ◽  
R. Fragoso ◽  
N. Castillo

Titanium dioxide thin films were deposited on crystalline silicon (100) substrates by delivering a liquid aerosol of titanium-diisopropoxide. The evidence of a metalorganic chemical vapor deposition process observed in the crystalline and morphological features of the films is strongly supported by the behavior of the growth rate rg as a function of the deposition temperature. The rg line shape indicates that in a wide range of temperatures (∼180–400 °C), the film formation is limited by both gas-phase diffusion of some molecular species toward the substrate surface and the thermal reaction of those species on that surface. The activation energy EA that characterizes the surface reaction depends somewhat on the precursor concentration; a fitting procedure to an equation that takes into account both limiting mechanisms (gas-phase diffusion + surface reaction) yields EA ≃ 27.6 kJ/mol.


1991 ◽  
Vol 236 ◽  
Author(s):  
R. Qian ◽  
I. Chung ◽  
D. Kinosky ◽  
T. Hsu ◽  
J. Irby ◽  
...  

AbstractRemote Plasma-enhanced Chemical Vapor Deposition (RPCVD) has been used to grow GexSi1−x/Si heteroepitaxial thin films at low temperatures (∼450°C). In situ RHEED has been used to confirm that smooth, single crystal heteroepitaxial films can be grown by RPCVD. Plan-view and cross-sectional TEM have been employed to study the microstructure of the heteroepitaxial films. Lattice imaging high resolution TEM (HRTEM) has shown perfect epitaxial lattice alignment at the heterojunction interfaces. GexSi1−x/Si films which exceed their CLT's appreciably show dense Moiré fringes under plan-view TEM. The spacings between the fringes have been used to estimate the relaxed lattice constants. In addition to the inhomogeneous strain observed in XTEM, Selected Area electron Diffraction (SAD) analysis of the interfaces displays two split patterns. The spacings between the diffraction spots have been used to calculate the lattice constants in the epitaxial films in different crystal directions, which agree very well with the prediction by Vegard's law as well as the estimate from planview TEM analysis. HRTEM analysis also reveals the crystallographic nature of the interfacial misfit dislocations in the relaxed films.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2492 ◽  
Author(s):  
Yun Zhao ◽  
Chengming Li ◽  
Jinlong Liu ◽  
Kang An ◽  
Xiongbo Yan ◽  
...  

In the present investigation, a nitrogen-doped multilayer homoepitaxial single crystal diamond is synthesized on a high-pressure high temperature (HPHT) Ib-type diamond substrate using the microwave plasma chemical vapor deposition (MPCVD) method. When 0.15 sccm of nitrogen was added in the gas phase, the growth rate of the doped layer was about 1.7 times that of the buffer layer, and large conical and pyramidal features are formed on the surface of the sample. Raman mapping and photoluminescence imaging of the polished cross sectional slice shows a broadband emission, with a characteristic zero phonon line (ZPL) at 575 nm in the doped layers, and large compressive stress was formed in the nitrogen-doped layers. X-ray topography shows that the defects at the interface can induce dislocation. The pyramid feature is formed at the defect, and more nitrogen-related defects are formed in the pyramid region. Thin nitrogen-doped multilayers were successfully prepared, and the thickness of the nitrogen-doped and buffer layers was about 650 nm each. The indentation measurements reveal that the thin nitrogen-doped multilayers are ultra-tough (at least ~22 MPa m1/2), compared to the Ib-type HPHT seed substrate (~8 MPa m1/2) and the unintentionally doped chemical vapor deposition (CVD) single crystal diamond (~14 MPa m1/2).


1995 ◽  
Vol 415 ◽  
Author(s):  
J. F. Roeder ◽  
B. A. Vaartstra ◽  
P. C. Van Buskirk ◽  
H. R. Beratan

ABSTRACTFerroelectric PbZrxTi1-x O3 (PZT) films have been deposited by chemical vapor deposition using flash vaporized metalorganic precursors. Crystalline perovskite films approximately 3000Å thick were deposited on Pt/Si substrates at 550–590°C and had dielectric coefficients in the range of 600–1900. Dielectric constant was found to increase with increasing Zr/Ti ratio, rising to the largest values near the morphotropic phase boundary. Remanent polarizations of the PZT were between 20–27 μC/cm2 and the coercive field decreased with increasing Zr/Ti ratio from 43 to 21 kV/cm. Pyroelectric coefficients were measured using the Byer-Roundy technique and ranged from 20–30 nC/cm2K. At 550°C, a direct relationship was observed between precursor composition and film composition. At 590°C, volatility of PbO became appreciable and composition of films with Zr/(Zr+Ti) = 0.3 remained near stoichiometry over a wide range of excess Pb in the precursor. However, this effect was found to diminish for higher ratios of Zr/Ti. The orientation of the PZT films deposited over a range of precursor compositions was similar with some [100] preferred orientation. In contrast, the orientation of a PbTiO3 films could be manipulated by the Pb/Ti ratio in the precursor, with [111] preferred orientations predominating at lower Pb/Ti and [ 100/001]–[111] mixed orientations at higher Pb/Ti ratios.


1994 ◽  
Vol 9 (6) ◽  
pp. 1474-1483 ◽  
Author(s):  
Woo Y. Lee ◽  
Theodore M. Besmann ◽  
Michael W. Stott

The chemical vapor deposition (CVD) of MoS2 by reaction of H2S with molybdenum halides was determined to be thermodynamically favored over a wide range of temperature, pressure, and precursor concentration conditions as long as excess H2S was available. The thermochemical stability of H2S, MoF6, and MoCI5 was also assessed to address their suitability as precursors for the CVD of MoS2. The results from the thermodynamic analysis were used as guidance in the deposition of MoS2 thin films from MoF6 and H2S. The (002) basal planes of MoS2 films deposited above 700 K were preferentially oriented perpendicular to the substrate surface.


Sign in / Sign up

Export Citation Format

Share Document