ESR Study of Porous Silicon

1992 ◽  
Vol 283 ◽  
Author(s):  
W. Y. Cheung ◽  
S. P. Wong ◽  
I. H. Wilson ◽  
C. F. Kan ◽  
S. K. Hark

ABSTRACTA detailed ESR study has been performed on porous silicon on both <100> and <111> p-type silicon substrates prepared using anodization in HF under a range of conditions and the results are correlated with the light emission properties. It is found that the ESR spectra are dependent upon the orientation of the samples. The ESR defect centers are identified to be the Pb centers or Pbo centers of the Si-SiO2 system from the g-value anisotropy maps. The variation of the spin density Ns with annealing conditions has also been studied for samples annealed either in nitrogen or oxygen ambient at 200°C for various time intervals. It is concluded that the increase or decrease of Ns are due to the generation or elimination of the Pb or Pbo centers in conjunction with the oxidation process during annealing. From PL study of these samples, it is found that there is no simple correlation between the spin density and the PL intensity. However, a blue shift in the PL peak position was observed both in samples after a post-annealing etch in HF solution, and in samples annealed in oxygen without a post-annealing etch. This blue shift supports the quantum confinement model of light emission from porous silicon.

1994 ◽  
Vol 358 ◽  
Author(s):  
Z. C. Feng ◽  
Z. Chen ◽  
K. R. Padmanabhan ◽  
K. Li ◽  
A. T. S. Wee ◽  
...  

ABSTRACTA new type of HF solution, HF-acetonitrile (MeCN), has been employed to produce 10-30 μm thick porous silicon (P-Si) layers by photoelectrochemical etching of different types of Si wafers, Si(100), Si(111) and polycrystalline Si, with different resistivities. A combined optical, surface and nuclear microscopic assessment of these P-Si layers was performed using photoluminescence (PL), Raman scattering, X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectroscopy (RBS). The PL emission intensities, Raman line shapes and structural features are strongly dependent on the properties of the substrates such as the crystallinity and resistivity of the Si wafers used for forming P-Si. With increasing resisitivity of the Si(100) wafers, the resulting P-Si layers show a slight blue-shift of their visible light emission peak energy, an up-shift of the peak position and a narrowing of the band width of the dominant Raman band, and a decrease in the amount of residual elemental Si on the surface. Those Si(l 11) wafers, etched in HF-MeCN, showed no porous structures and no visible light emission.


2012 ◽  
Vol 584 ◽  
pp. 290-294 ◽  
Author(s):  
Jeyaprakash Pandiarajan ◽  
Natarajan Jeyakumaran ◽  
Natarajan Prithivikumaran

The promotion of silicon (Si) from being the key material for microelectronics to an interesting material for optoelectronic application is a consequence of the possibility to reduce its device dimensionally by a cheap and easy technique. In fact, electrochemical etching of Si under controlled conditions leads to the formation of nanocrystalline porous silicon (PS) where quantum confinement of photo excited carriers and surface species yield to a band gap opening and an increased radiative transition rate resulting in efficient light emission. In the present study, the nanostructured PS samples were prepared using anodic etching of p-type silicon. The effect of current density on structural and optical properties of PS, has been investigated. XRD studies confirm the presence of silicon nanocrystallites in the PS structure. By increasing the current density, the average estimated values of grain size are found to be decreased. SEM images indicate that the pores are surrounded by a thick columnar network of silicon walls. The observed PL spectra at room temperature for all the current densities confirm the formation of PS structures with nanocrystalline features. PL studies reveal that there is a prominent visible emission peak at 606 nm. The obtained variation of intensity in PL emission may be used for intensity varied light emitting diode applications. These studies confirm that the PS is a versatile material with potential for optoelectronics application.


2013 ◽  
Vol 667 ◽  
pp. 180-185
Author(s):  
M. Ain Zubaidah ◽  
F.S. Husairi ◽  
S.F.M. Yusop ◽  
Noor Asli Asnida ◽  
Mohamad Rusop ◽  
...  

P-type silicon wafer ( orientation; boron doping; 0.75 ~ 10 Ω cm-1) was used to prepare samples of porous silicon nanostructures (PSiNs). All samples have been prepared by using photo-electrochemical anodisation. A fixed etching time of 30 minutes and volume ratio of electrolyte, hydrofluoric acid 48% (HF48%) and absolute ethanol (C2H5OH), 1:1 were used for various current densities, J. There were sample A (J=10 mA/cm2), sample B (J=20 mA/cm2), sample C (J=30 mA/cm2), sample D (J=40 mA/cm2) and sample E (J=50 mA/cm2). Photoluminescence (PL) and electroluminescence (EL) spectra were investigated. Maximum peak position of PL spectrum at about ~675 nm, while the maximum EL spectrum at about ~650 nm (which is similar to the PL spectrum).


2010 ◽  
Vol 66 ◽  
pp. 41-46 ◽  
Author(s):  
Nutthanun Moolsradoo ◽  
Hirohumi Sato ◽  
Shuichi Watanabe

The element added diamond-like carbon films (hydrogen, fluorine, and sulfur) fabricated from C2H2:H2, C2H2:CF4 and C2H2:SF6 mixtures were used to study the effects of element contents on the spin density (ESR) and their relation to the changes in the structure of the DLC films deposited by PBII and RF-CVD method. The Raman spectroscopy was represented along with the ESR. The results indicate that the ESR spin density and g value of H-DLC, F-DLC, and S-DLC films deposited by PBII method decreases with element addition, attributed to the dangling bond was strongly observed after element addition. The Raman G peak position shifts towards higher, while the ID/IG intensity ratio increases with element addition and changes of bias voltage. For H-DLC films deposited by RF-CVD method, the spin density and g value decreases, the G peak shifts toward higher and ID/IG intensity ratio increases with hydrogen addition, that similar to H-DLC films deposited by PBII method. The ID/IG intensity ratio increases with hydrogen addition, indicating that the number of sp2 graphitic clusters of aromatic rings increases in the structure, and the decrease of spin density is correlated to the increase of the paramagnetic centers in the sp2-bonded graphite-like carbon structures, indicating to the spins originate mainly from the sp2 sites in the graphite-like carbon structures.


2015 ◽  
Vol 245 ◽  
pp. 49-54
Author(s):  
Mikhail Victorovich Bozhenko ◽  
Evgeniy Anatolievich Chusovitin ◽  
Nikolay Gennadievich Galkin ◽  
Evgeny Vladislavovich Pustovalov ◽  
Vladimir Vadimovich Tkachev ◽  
...  

Porous silicon layers were formed on the silicon substrates treated with compression plasma flow. Pores density and lateral size on substrates treated with plasma is by 25% more than that on untreated substrates. The intensity of the PL of the PS layers, formed on the plasma treated substrates (PT PS), is twice more than that of the PS layers, formed on untreated substrates. Three month exposure of normal PS and PT PS layers to the air leads to the PL intensity increase by 3 and 5.7 times, respectively, as well as to the peak position shifting towards long wavelength region by 3.1 nm, in the case of PT PS layer. The PL intensity increase is attributable to the reduction of the dangling bond density as a result of passivation by oxygen.


2013 ◽  
Vol 686 ◽  
pp. 49-55
Author(s):  
M. Ain Zubaidah ◽  
N.A. Asli ◽  
Mohamad Rusop ◽  
Saifollah Abdullah

For this experiment, the main purpose of this experiment is to determine the electroluminescence of PSiNs samples with optimum electrolyte volume ratio of photo-electrochemical anodisation. PSiNs samples were prepared by photo-electrochemical anodisation by using p-type silicon substrate. For the formation of PSiNs on the silicon surface, a fixed current density (J=20 mA/cm2) and 30 minutes etching time were applied for the various electrolyte volume ratio. Volume ratio of hydrofluoric acid 48% (HF48%) and absolute ethanol (C2H5OH), HF48%:C2H5OH was used for sample A (3:1), sample B (2:1), sample C (1:1), sample D (1:2) and sample E (1:3). The light emission can be observed at visible range. The effective electroluminescence was observed for sample C. Porous silicon nanostructures light–emitting diode (PSiNs-LED) has high-potential device for future flat screen display and can be high in demand.


1996 ◽  
Vol 452 ◽  
Author(s):  
G. Lérondel ◽  
P. Ferrand ◽  
R. Romestain

AbstractWe account for the elaboration of Bragg reflectors and microcavities based on efficiently luminescent porous silicon. A characterisation of very thin porous silicon layers obtained with current densities of formation varying from 1.5 mA to 300 mA is presented. The resulting refractive index variation (typically from 1.37 to 1.86 at 700 nm) enables the elaboration of high quality Bragg reflectors and Fabry-Perot filters from the yellow to the near infrared. Although low doped p-type porous silicon develops rougher interfaces than highly doped p-type porous silicon, its better luminescence efficiency has enabled us to elaborate microcavities with a strong emission in a narrow band.


2018 ◽  
Vol 386 ◽  
pp. 75-79
Author(s):  
Nikolay G. Galkin ◽  
Dmitrii Tkhyarbonovich Yan ◽  
Konstantin N. Galkin ◽  
Evgeniy Anatolievich Chusovitin ◽  
Mikhail Victorovich Bozhenko

In the process of comparative studies of immersing layers of porous silicon (PS) in aqueous solutions of LiBr and Fe (NO3)3 with subsequent long-term storage up to 150 days, it is established that there exists: (1) the range of concentrations of LiBr (S/2 - S/4) and Fe (NO3)3 (0.2 M), which provide the maximum increase in the intensity of PL; (2) at low concentrations of both salts, a blue shift of the PL peaks and an increase in their intensity are observed during the long-term storage, which is associated with a decrease in the size of the NC in the PS and the influence of silicon bonds with lithium or iron ions; (3) full protection of the PS layer is observed in case of immersion in Fe (NO3)3 with a concentration of 0.7M - 0.8M.


1994 ◽  
Vol 332 ◽  
Author(s):  
H.Z. Song ◽  
L.Z. Zhang ◽  
B.R. Zhang ◽  
G.G. Qin

ABSTRACTIt was found that porous silicon (PS) layers formed on 0.01 Ωcm (111) and 0.02 Ωcm (100) Si substrates show high photoluminescence (PL) peak energies on both lower and higher porosity sides and a minimum of PL peak energy at the moderate porosity, while those formed on 0.8 and 10Ωcm (111) p-type Si substrates show an increase of PL peak energy with porosity on the lower side and a saturation of PL peak energy with porosity on the higher side. These experimental facts are not consistent with the quantum confinement model for light emission of PS, which predicts a monotonous increase of PL peak energy with PS porosity.


1992 ◽  
Vol 283 ◽  
Author(s):  
H. Paul Maruska ◽  
F. Namavar ◽  
N. M. Kalkhoran

ABSTRACTWe discuss the operation of porous silicon light-emitting diodes prepared as heterojunctions between n-type In2O3:Sn (ITO) and p-type silicon nanostructures, exhibiting quantum confinement effects. The transparent ITO affords light emission through the top surface of the device, as well as providing passivation and hence long term stability. We describe a model for the injection of minority carrier electrons into the porous silicon regions, which results in the emission of yellow-orange DC electroluminescence. A detailed study of the forward bias current-voltage characteristics of the devices will be given, which allows calculations of the densities of interface states. A tendency to pin the hole fermi energy near the neutral level, φ0, is shown to control the extraction of majority carriers. Methods for improving LED efficiency by alleviating a parasitic shunt current path through interface states will be addressed.


Sign in / Sign up

Export Citation Format

Share Document