Photoluminescence of Chemically Etched Polycrystalline and Amorphous Si Thin Films

1993 ◽  
Vol 298 ◽  
Author(s):  
A. J. Steckl ◽  
J. Xu ◽  
H. C. Mogul

AbstractSi thin films were deposited on quartz at temperatures ( TD ) ranging from 540 to 640°C. X-ray diffraction indicates that films deposited at TD < 580°C are amorphous, while those deposited above 600°C are poly-crystalline with a <220> texture. The Si films were made porous by stain-etching in HF:HNO3:H2O. Only Si films deposited at 590°C and above show photoluminescence (PL), centered at ∼650-670 nm under UV excitation. Films deposited at TD < 580°C do not luminesce even after very long etch times, which produce a highly porous structure. The PL intensity and the x-ray signal follow a very similar trend with TD. It appears that a minimum level of crystallinity is required for photoemission in porous Si and that a strong relationship exists between them.

1989 ◽  
Vol 43 (1-4) ◽  
pp. 142-149 ◽  
Author(s):  
E.L. Mathé ◽  
J.G. Maillou ◽  
A. Naudon ◽  
E. Fogarassy ◽  
M. Elliq ◽  
...  

1992 ◽  
Vol 259 ◽  
Author(s):  
T. George ◽  
R. P. Vasquez ◽  
S. S. Kim ◽  
R.W. Fathauer ◽  
W. T. Pike

ABSTRACTThe nature of light-emitting porous Si layers produced by non-anodic stain etching of p-type (100) Si substrates is studied. The layers were characterized by transmission electron microscopy as being amorphous in nature. X-ray photoelectron spectroscopy and electron spin resonance measurements show these layers to be composed mainly of a-Si. The formation mechanism of the a-Si is explored using by stain etching SiGe ‘marker’ layers within epitaxially grown Si films and by high temperature annealing. These experiments provide strong evidence for a spontaneous crystalline-amorphous phase transformation during the etching process.


1985 ◽  
Vol 47 ◽  
Author(s):  
Betty Coulman ◽  
Haydn Chen ◽  
Kenneth Ritz

ABSTRACTLittle is known about the development of film stresses in very thin films (thicknesses of the order of a few hundred Angstroms or less). As interest intensifies in the technological application of ever smaller quantities of materials, the behavior of very thin. films will undergo increasing scrutiny. In this study, the film stresses in evaporated Pd films and Pd2Si films formed by reaction with the Si substrates at 250°C were measured for thicknesses ranging from 7 to 107 nm. Stresses were calculated from the substrate radii of curvature determined by X-ray diffraction topography techniques (Lang and double crystal) and Stoney's equation. Because film continuity cannot be taken for granted at low coverage, the films were examined by electron microscopy in an attempt to correlate their morphology with the observed stresses.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


2006 ◽  
Vol 88 (25) ◽  
pp. 252901 ◽  
Author(s):  
Jyrki Lappalainen ◽  
Vilho Lantto ◽  
Johannes Frantti ◽  
Jussi Hiltunen

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ahmad Al-Sarraj ◽  
Khaled M. Saoud ◽  
Abdelaziz Elmel ◽  
Said Mansour ◽  
Yousef Haik

Abstract In this paper, we report oxidation time effect on highly porous silver oxide nanowires thin films fabricated using ultrasonic spray pyrolysis and oxygen plasma etching method. The NW’s morphological, electrical, and optical properties were investigated under different plasma etching periods and the number of deposition cycles. The increase of plasma etching and oxidation time increases the surface roughness of the Ag NWs until it fused to form a porous thin film of silver oxide. AgNWs based thin films were characterized using X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoemission spectroscopy, and UV–Vis spectroscopy techniques. The obtained results indicate the formation of mixed mesoporous Ag2O and AgO NW thin films. The Ag2O phase of silver oxide appears after 300 s of oxidation under the same conditions, while the optical transparency of the thin film decreases as plasma etching time increases. The sheet resistance of the final film is influenced by the oxidation time and the plasma application periodicity. Graphic abstract


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 724
Author(s):  
Sara Massardo ◽  
Alessandro Cingolani ◽  
Cristina Artini

Rare earth-doped ceria thin films are currently thoroughly studied to be used in miniaturized solid oxide cells, memristive devices and gas sensors. The employment in such different application fields derives from the most remarkable property of this material, namely ionic conductivity, occurring through the mobility of oxygen ions above a certain threshold temperature. This feature is in turn limited by the association of defects, which hinders the movement of ions through the lattice. In addition to these issues, ionic conductivity in thin films is dominated by the presence of the film/substrate interface, where a strain can arise as a consequence of lattice mismatch. A tensile strain, in particular, when not released through the occurrence of dislocations, enhances ionic conduction through the reduction of activation energy. Within this complex framework, high pressure X-ray diffraction investigations performed on the bulk material are of great help in estimating the bulk modulus of the material, and hence its compressibility, namely its tolerance toward the application of a compressive/tensile stress. In this review, an overview is given about the correlation between structure and transport properties in rare earth-doped ceria films, and the role of high pressure X-ray diffraction studies in the selection of the most proper compositions for the design of thin films.


Sign in / Sign up

Export Citation Format

Share Document