Stability And Precipitation Kinetics In Si1-yCy/Si and Si1-x-yGexC/Si Heterostructures Prepared by Solid Phase Epitaxy

1993 ◽  
Vol 321 ◽  
Author(s):  
J. W. Strane ◽  
S. T. Picraux ◽  
H. J. Stein ◽  
S. R. Lee ◽  
J. Candelaria ◽  
...  

ABSTRACTThis study investigates the stability of Metastable Si1-yCy/Si heterostructures during rapid thermal annealing (RTA) over a temperature range of 1000 – 1150° C Heterostructures of Si1-yCy/Si and Si1-x-yGexCy/Si (x=0.077, y ≤ .0014) were formed by solid phase epitaxy from C implanted, preamorphized substrates using a 30 Minute 700° C anneal in N2. The occupancy of C in substitution lattice sites was monitored by Fourier Transform Infrared Absorption spectroscopy. The layer strain was monitored by rocking curve x-ray diffraction and the structural changes in the layers were determined using plan-view and X-sectional transmission electron Microscopy (TEM). For anneals of 1150° C or above, all the substitutional C was lost from the Si lattice after 30 seconds. TEM verified that the strain relaxation was the result of C precipitating into highly aligned βSiC particles rather than by the formation of extended defects. No nucleation barrier was observed for the loss of substitutional C Preliminary results will also be discussed for Si1-x-yGexCy/Si heterostructures where there is the additional factor of the competition between strain energy and the chemical driving forces.

1989 ◽  
Vol 160 ◽  
Author(s):  
B.J. Robinson ◽  
B.T. Chilton ◽  
P. Ferret ◽  
D.A. Thompson

AbstractSingle strained layer structures of up to 30 nm of Si1-xGex. on (100) Si and capped with 30-36 nm of Si have been amorphized by implantation with 120 keV As . The amorphized region, extending to a depth of 130 nm, has been regrown by solid phase epitaxy (SPE) at 600°C. Characterization of the regrown structure by Rutherford backscattering/channeling techniques and transmission electron microscopy indicates that for x < 0.18 the SPE process results in the recovery of strain, while for x > 0.18 there is increasing strain relaxation and a deterioration of crystal quality.


2001 ◽  
Vol 16 (11) ◽  
pp. 3229-3237 ◽  
Author(s):  
A. C. Y. Liu ◽  
J. C. McCallum ◽  
J. Wong-Leung

Solid-phase epitaxy was examined in deep amorphous volumes formed in silicon wafers by multi-energy self-implantation through a mask. Crystallization was effected at elevated temperatures with the amorphous volume being transformed at both lateral and vertical interfaces. Sample topology was mapped using an atomic force microscope. Details of the process were clarified with both plan-view and cross-sectional transmission electron microscopy analyses. Crystallization of the amorphous volumes resulted in the incorporation of a surprisingly large number of dislocations. These arose from a variety of sources. Some of the secondary structures were identified to occur uniquely from the crystallization of volumes in this particular geometry.


Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


1981 ◽  
Vol 4 ◽  
Author(s):  
J. Narayan ◽  
G. L. Olson ◽  
O. W. Holland

ABSTRACTTime-resolved-reflectivity measurements have been combined with transmission electron microscopy (cross-section and plan-view), Rutherford backscattering and ion channeling techniques to study the details of laser induced solid phase epitaxial growth in In+ and Sb+ implanted silicon in the temperature range from 725 to 1500 °K. The details of microstructures including the formation of polycrystals, precipitates, and dislocations have been correlated with the dynamics of crystallization. There were limits to the dopant concentrations which could be incorporated into substitutional lattice sites; these concentrations exceeded retrograde solubility limits by factors up to 70 in the case of the Si-In system. The coarsening of dislocation loops and the formation of a/2<110>, 90° dislocations in the underlying dislocation-loop bands are described as a function of laser power.


1995 ◽  
Vol 379 ◽  
Author(s):  
N.D. Theodore ◽  
W.S. Liu ◽  
D.Y.C. Lie ◽  
T.K. Cams ◽  
K.L. Wang

ABSTRACTTransmission electron microscopy, conventional and high-resolution, is used to characterize the microstructural behavior of oxidized Ge0.78Si0.12 layers annealed in a reducing 95% N2+ 5% H2 ambient. An epitaxial Ge layer grows by solid-phase epitaxy on an underlying Ge0.78Si0.12 seeding layer with a Ge-Sio2 matrix positioned between them. Defect densities in the epitaxial Ge are significantly lower than in the underlying Ge0.78Si0.12. Microstructural details of this behavior are investigated.


2002 ◽  
Vol 742 ◽  
Author(s):  
M. E. Twigg ◽  
R. E. Stahlbush ◽  
M. Fatemi ◽  
S. D. Arthur ◽  
J. B. Fedison ◽  
...  

ABSTRACTUsing site-specific plan-view transmission electron microscopy (TEM) and lightemission imaging (LEI), we have identified SFs formed during forward biasing of 4H-SiC PiN diodes. These SFs are bounded by Shockley partial dislocations and are formed by shear strain rather than by condensation of vacancies or interstitials. Detailed analysis using TEM diffraction contrast experiments reveal SFs with leading carbon-core Shockley partial dislocations as well as with the silicon-core partial dislocations observed in plastic deformation of 4H-SiC at elevated temperatures. The leading Shockley partials are seen to relieve both tensile and compressive strain during PiN diode operation, suggesting the presence of a complex and inhomogeneous strain field in the 4H-SiC layer.


1993 ◽  
Vol 319 ◽  
Author(s):  
X. J. Ning ◽  
P. Pirouz

AbstractDespite tremendous activity during the last few decades in the study of strain relaxation in thin films grown on substrates of a dissimilar material, there are still a number of problems which are unresolved. One of these is the nature of misfit dislocations forming at the film/substrate interface: depending on the misfit, the dislocations constituting the interfacial network have predominantly either in-plane or inclined Burgers vectors. While, the mechanisms of formation of misfit dislocations with inclined Burgers vectors are reasonably well understood, this is not the case for in-plane misfit dislocations whose formation mechanism is still controversial. In this paper, misfit dislocations generated to relax the strains caused by diffusion of boron into silicon have been investigated by plan-view and crosssectional transmission electron microscopy. The study of different stages of boron diffusion shows that, as in the classical model of Matthews, dislocation loops are initially generated at the epilayer surface. Subsequently the threading segments expand laterally and lay down a segment of misfit dislocation at the diffuse interface. The Burgers vector of the dislocation loop is inclined with respect to the interface and thus the initial misfit dislocations are not very efficient. However, as the diffusion proceeds, non-parallel dislocations interact and give rise to product segments that have parallel Burgers vectors. Based on the observations, a model is presented to elucidate the details of these interactions and the formation of more efficient misfit dislocations from the less-efficient inclined ones.


MRS Advances ◽  
2018 ◽  
Vol 3 (31) ◽  
pp. 1799-1805 ◽  
Author(s):  
Ítalo M. Oyarzabal ◽  
Mariana de M. Timm ◽  
Willian M. Pasini ◽  
Franciele S. M. de Oliveira ◽  
Francine Tatsch ◽  
...  

ABSTRACT200 μm thick solution annealed AISI 316L stainless steel foils were implanted with Ar ions to produce a 0.25 at. % concentration-depth plateau extending from the near surface to a depth of ≈ 250 nm, and then annealed at 550°C for 2 hours to form small Ar bubbles and Ar-vacancy clusters. Distinct sets of samples (including control ones without Ar) were irradiated at the temperature of 550 °C with Au ions accelerated at 5 MeV to produce an average damage content about ≈36 dpa at the region containing the Ar plateau. These samples were investigated by transmission electron microscopy using plan-view specimens prepared by ion milling. In contrast with the control samples where the irradiation causes the formation of a high concentration of extended defects and large cavities, carbonite precipitation of 1:1 metal-carbon (MC) content with a cubic structure occurs only in the samples containing the Ar bubbles. This precipitation phenomenon is not commonly observed in the literature. The results are interpreted considering that the precipitate growth process requires the emission of vacancies which are synergistically absorbed by the growth of the Ar bubbles.


2019 ◽  
Vol 806 ◽  
pp. 30-35
Author(s):  
Nikolay Gennadievich Galkin ◽  
Konstantin N. Galkin ◽  
Sergei Andreevich Dotsenko ◽  
Dmitrii L'vovich Goroshko ◽  
Evgeniy Anatolievich Chusovitin ◽  
...  

The morphology and structure of iron silicide nanorods formed on Si (111) vicinal surface by the SPE method at T = 630 °C were studied. Optimal Fe coverage and Fe deposition rate for the formation of a dense array of the nanorods (54-65% of the substrate area) on Si (111) surface with 3-4o miscut angles were established. The aspect ratio of the nanorods is 1.9 – 3.3. Cross-sectional images of a high-resolution transmission electron microscopy (HRTEM) have shown that the nanorods have α-FeSi2 crystal structure. They are strained along the “a” axis and stretched along the “c” axis, which increased the unit cell volume by 10.3%. According to HRTEM image analysis, the nanorods have the following epitaxial relationships: α-FeSi2[01]//Si [10] and α-FeSi2(112)//Si (111). All the data obtained have provided, for the first time, a direct evidence of α-FeSi2 nanorods formation on Si (111) vicinal surface without noticeable penetration of Fe atoms into the Si substrate.


1988 ◽  
Vol 128 ◽  
Author(s):  
J. Said ◽  
H. Jaouen ◽  
G. Ghibaudo ◽  
I. Stoemenos ◽  
P. Zaumseil

ABSTRACTThe combination of electrical, Transmission Electron Microscopy and Triple Crystal X-ray Diffraction measurements allow us to separate the existence of a local impurity activation process from the amorphous- crystal transformation. The local process occurs in the highly damaged surface layer induced by the arsenic implantation and is efficient well below the Solid Phase Epitaxy transition temperature. It is suggested that point defect migration should play an important role in the electrical impurity activation at low annealing temperatures.


Sign in / Sign up

Export Citation Format

Share Document