Room Temperature Laser Deposited Indium Tin Oxide Films for Display Applications

1994 ◽  
Vol 345 ◽  
Author(s):  
W. C. Yip ◽  
A. Gururaj Bhat ◽  
H. S. Kwok

AbstractIndium tin oxide is the most basic transparent electrode material for all flat panel displays. Commercial ITO glass is manufactured mostly by sputtering. Here, we report the use of pulsed laser deposition to produce ITO thin films on glass at room temperature. Several interesting properties of such films were observed. (1) It was found that the resistivity of 0.5mΩ-cm compared very well with the best published values produced at high deposition temperatures. Room temperature deposition affords the possibility of using plastics and other flexible substrates for displays. (2) The microstructure of these ITO films were quite different from those of commercial ITO glasses. (3) By passing a strong current through the film, a large thermally induced Δnl could be observed. This change was due to lateral stress and could be as large as 1μ m for a 1-μm thick film. An electro-optic shutter can easily be designed with such films. Applications of this electronically controlled Δnl to display technology are discussed.

2003 ◽  
Vol 18 (2) ◽  
pp. 442-447 ◽  
Author(s):  
Karola Thiele ◽  
Sibylle Sievers ◽  
Christian Jooss ◽  
Jörg Hoffmann ◽  
Herbert C. Freyhardt

Biaxially aligned indium tin oxide (ITO) thin films were prepared by an ion-beamassisted deposition (IBAD) process at room temperature. Films with a transmittance at 550 nm of 90% and an electrical resistivity of 1.1 × 10−3 Ωcm for 300 and 250 nm thickness were obtained. Investigations of the texture evolution during IBAD film growth were carried out and compared to the well-established texture development in yttria-stabilized zirconia. An in-plane texture of 12.6° full width at half-maximum (FWHM) for a 1-μm-thick IBAD-ITO film was achieved. The quality of these films as electrically conductive buffer layers for YBa2Cu3O7-δ (YBCO) high-temperature superconductors was demonstrated by the subsequent deposition of high-currentcarrying YBCO films by thermal co-evaporation using a 3–5-nm-thick Y2O3 interlayer.A Jc of 0.76 MA/cm2 (77K, 0 T) was obtained for a 1 × 1 cm sample with ITO of 20° FWHM.


2008 ◽  
Vol 55-57 ◽  
pp. 769-772 ◽  
Author(s):  
I Srithanachai ◽  
K. Nutaman ◽  
A. Rerkratn ◽  
S. Niemcharoen ◽  
S. Supadech

This paper descript studying and preparation indium-tin oxide (ITO) thin film from method 90 wt.% In2O3 and 10 wt.% SnO2 formula target with 99.99% purity on glass slide by RF reactive sputtering method at room temperature. This paper, sputtering time 5, 15, 30 and 60 mins. Thin films ITO were measured crystallization, optical and electrical characteristic by an X-ray diffractometer (XRD), scan electron microscopy (SEM) , Four Point Probe and UV-VIS spectrophotometry. The results found that thin films which made from RF sputtering method had a high crystallization, order arrangement grain. Strong peak of XRD (400) and (441), low resistivity are 2.2 x 10-3, 4.4 x 10-3, 1 x 10-3 and 7 x 10-4 Ω-cm, transmittance are 82%, 84%, 87% and 89%, respectively. The overall experimental results identify that fabricated thin films ITO have good properties and is suitable for transparent electrode application. The ultimate goal is developing schottky photodetector.


1995 ◽  
Vol 403 ◽  
Author(s):  
Otto J. Gregory ◽  
Stephen E. Dyer ◽  
Paul S. Amons ◽  
Arnout Bruins SLOT

AbstractStrain sensors based on thin films of indium tin oxide (ITO) have been developed for a variety of applications, where the measurement of both static and dynamic strain are required at elevated temperatures. ITO thin films were prepared by rf reactive sputtering in Ar:02 mixtures from high density, electrically conductive targets having a nominal composition of 90% In203 and 10% Sn02. The resulting ITO films exhibited room temperature resistivities between 2x10−2 and 2x102 ω cm, an optical bandgap of 3.5 ev and tested “n” type by hot probe. These same films exhibited large negative gage factors (G=δρ/ ρδε) when tested at room temperature and a relatively low temperature coefficient of resistance when tested at elevated temperature in air. Specifically, gage factors approaching -100 with little hysteresis were observed for strains up to 700 μin/in and TCR's as low as 195 ppm/°C have been measured for the sputtered ITO films. In addition, these films were electrically stable and readily formed ohmic contacts with platinum at temperatures up to 1180°C. In this paper, we report on the electrical properties and piezoresistive properties of ITO based strain gages at temperatures up to 1180°C. Prospects of using ITO thin films as the active strain elements in high temperature strain gages and the characteristics of strain sensors based on ITO are discussed.


2017 ◽  
Vol 18 (1) ◽  
pp. 69-74
Author(s):  
Leandro Voisin ◽  
Makoto Ohtsuka ◽  
Takashi Nakamura ◽  
S. Petrovska ◽  
B. Ilkiv ◽  
...  

Indium saving indium tin oxide ITO thin films have been deposited using a sputtering deposition technique in pure Ar and in mixed argon-oxygen atmosphere at room temperature. A transmittance value of more than 85 % in the visible region of the spectrum and a resistivity of 2420 µΩcm has been obtained for the thin films deposited in pure Ar and subsequently heat treated at 923 K. The structure of the as-deposited indium saving indium-tin oxide films was amorphous and the crystallinity was improved with increasing heat treatment temperature. An increase in the heat treatment temperature does not enhance the transmittance of the films at oxygen flow rate higher than 0.4 cm3/min.


2019 ◽  
Vol 10 ◽  
pp. 1511-1522 ◽  
Author(s):  
Petronela Prepelita ◽  
Ionel Stavarache ◽  
Doina Craciun ◽  
Florin Garoi ◽  
Catalin Negrila ◽  
...  

In this work, rapid thermal annealing (RTA) was applied to indium tin oxide (ITO) films in ambient atmosphere, resulting in significant improvements of the quality of the ITO films that are commonly used as conductive transparent electrodes for photovoltaic structures. Starting from a single sintered target (purity 99.95%), ITO thin films of predefined thickness (230 nm, 300 nm and 370 nm) were deposited at room temperature by radio-frequency magnetron sputtering (rfMS). After deposition, the films were subjected to a RTA process at 575 °C (heating rate 20 °C/s), maintained at this temperature for 10 minutes, then cooled down to room temperature at a rate of 20 °C/s. The film structure was modified by changing the deposition thickness or the RTA process. X-ray diffraction investigations revealed a cubic nanocrystalline structure for the as-deposited ITO films. After RTA, polycrystalline compounds with a textured (222) plane were observed. X-ray photon spectroscopy was used to confirm the beneficial effect of the RTA treatment on the ITO chemical composition. Using a Tauc plot, values of the optical band gap ranging from 3.17 to 3.67 eV were estimated. These values depend on the heat treatment and the thickness of the sample. Highly conductive indium tin oxide thin films (ρ = 7.4 × 10−5 Ω cm) were obtained after RTA treatment in an open atmosphere. Such films could be used to manufacture transparent contact electrodes for solar cells.


2013 ◽  
Vol 537 ◽  
pp. 161-164
Author(s):  
Xue Jiao Li ◽  
Cheng Zhang ◽  
Na Zhang

PZO (PbZrO3) coatings with different thicknesses were deposited onto Indium Tin Oxide ITO glass substrates at room temperature by magnetron sputtering technique. UV-Vis absorption spectra method and microhardness testing method were used to measure the thickness of coating. It was proved that the measuring results of film thickness by two kinds of methods were equivalent, and either one method can be alternatively used to determine the thickness of deposited films.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 560
Author(s):  
Ravindra Ketan Mehta ◽  
Anupama Bhat Kaul

In this work, we implemented liquid exfoliation to inkjet-print two-dimensional (2D) black phosphorous (BP) and molybdenum disulfide (MoS2) p–n heterojunctions on a standard indium tin oxide (ITO) glass substrate in a vertical architecture. We also compared the optical and electrical properties of the inkjet-printed BP layer with that of the MoS2 and the electrical properties of the mechanically exfoliated MoS2 with that of the inkjet-printed MoS2. We found significant differences in the optical characteristics of the inkjet-printed BP and MoS2 layers attributed to the differences in their underlying crystal structure. The newly demonstrated liquid exfoliated and inkjet-printed BP–MoS2 2D p–n junction was also compared with previous reports where mechanically exfoliated BP–MoS2 2D p–n junction were used. The electronic transport properties of mechanically exfoliated MoS2 membranes are typically better compared to inkjet-printed structures but inkjet printing offers a cost-effective and quicker way to fabricate heterostructures easily. In the future, the performance of inkjet-printed structures can be further improved by employing suitable contact materials, amongst other factors such as modifying the solvent chemistries. The architecture reported in this work has potential applications towards building solar cells with solution processed 2D materials in the future.


2012 ◽  
Vol 1511 ◽  
Author(s):  
Ippei Ishikawa ◽  
Keisuke Sakurai ◽  
Shuji Kiyohara ◽  
Taisuke Okuno ◽  
Hideto Tanoue ◽  
...  

ABSTRACTThe microfabrication technologiesfor organic light-emitting devices (OLEDs) are essential to the fabrication of the next generation of light-emitting devices. The micro-OLEDs fabricated by room-temperature curing nanoimprint lithography (RTC-NIL) using diamond molds have been investigated. However, light emissions from 10 μm-square-dot OLEDs fabricated by the RTC-NIL method have not been uniform. Therefore, we proposed the fabrication of micro-OLEDs by room-temperature curing nanocontact-print lithography (RTC-NCL) using the diamond-like carbon (DLC) mold. The DLC molds used in RTC-NCL were fabricated by an electron cyclotron resonance (ECR) oxygen ion shower with polysiloxane oxide mask in electron beam (EB) lithography technology. The mold patterns are square and rectangle dots which has 10 µm-width, 10 µm-width and50 µm-length, respectively. The height of the patterns is 500 nm. The DLC molds were used to form the insulating layer of polysiloxane in RTC-NCL. We carried out the RTC-NCL process using the DLC mold under the following optimum conditions: 0.1 MPa-pressure for coating DLC mold with polysiloxane film, 2.1 MPa-pressure for transferring polysiloxane from DLC mold pattern to indium tin oxide (ITO) glass substrate. We deposited N, N'-Diphenyl -N, N'-di (m-tolyl)benzidine (TPD) [40 nm-thickness] as hole transport layer / Tris(8-quinolinolato)aluminum (Alq3) [40 nm-thickness] as electron transport layer / Al [200 nm-thickness] as cathode on ITO glass substrateas anode in this order. We succeeded in formation of the insulating layer with square and rectangle dots which has 10 µm-width,10 µm-width and 50 µm-length, and operation of micro-OLEDs by RTC-NIL using DLC molds.


Sign in / Sign up

Export Citation Format

Share Document