High Electric Field Forming of a-Si:H P-I-N Diodes

1995 ◽  
Vol 377 ◽  
Author(s):  
A. Ilie ◽  
B. Equer ◽  
T. Pochet

ABSTRACTAmorphous hydrogenated p-i-n diodes submitted to a high reverse bias for a long period of time undergo a metastable evolution which tends to improve their properties. A forming procedure based on this effect has been developed and leads to a significant decrease of the reverse current and increase of the breakdown voltage. In this paper, the mechanisms underlying this forming process have been investigated using the Constant Photocurrent Method (CPM), (I-V) characteristics and Spectral Response under reverse bias. The effects of annealing and current induced defect creation have been studied. The forming process is found to be most consistent with a metastable increase in the dopant activation of the p-layer and a small decrease of the density of states in the i-layer.

2020 ◽  
Vol 10 (6) ◽  
pp. 780-787
Author(s):  
Hongyue Gao ◽  
Suna Li ◽  
Jicheng Liu ◽  
Wen Zhou ◽  
Fan Xu ◽  
...  

In this paper, we studied the holographic properties of liquid crystal (LC) thin film doped with carbon dots (CDs) which can be used as real-time holographic display screen. The maximum value of diffraction efficiency can reach up to 30% by using a low applied electric field 0.2 V/μm. Holograms in the LC film can be dynamically formed and self-erased. The hologram build-up time and the hologram self-erasure time in the material is fast enough to realize video refresh rate. In addition, the forming process of hologram was studied. The holographic diffraction efficiency was measured depending on the intensity of recording light, applied electric field, the intensity of readout light, and readout light polarization direction. Triple enhancement of the diffraction efficiency value by the modulation of voltage under the condition of low recording energy is presented. Therefore, we develop an easy way to obtain real-time dynamic holographic red, green and blue displays with high diffraction efficiency, which allow the LC film doped with CDs to be used as a holographic 3D display screen.


1980 ◽  
Vol 1 ◽  
Author(s):  
T. O. Yep ◽  
R. T. Fulks ◽  
R. A. Powell

ABSTRACTSuccessful annealing of p+ n arrays fabricated by ion-implantation of 11B (50 keV, 1 × 1014 cm-2) into Si (100 has been performed using a broadly rastered, low-resolution (0.25-inch diameter) electron beam. A complete 2" wafer could be uniformly annealed in ≃20 sec with high electrical activation (>75%) and small dopant redistribution (≃450 Å). Annealing resulted In p+n junctions characterized by low reverse current (≃4 nAcm-2 at 5V reverse bias) and higher carrier lifetime (80 μsec) over the entire 2" wafer. Based on the electrical characteristics of the diodes, we estimate that the electron beam anneal was able to remove ion implantation damage and leave an ordered substrate to a depth of 5.5 m below the layer junction.


1993 ◽  
Vol 297 ◽  
Author(s):  
R.A. Street ◽  
W.B. Jackson ◽  
M. Hack

Metastable defect creation by illumination and by a forward current in p-i-n devices are compared using CPM and reverse current measurements of the defect density. The data show that the same defects are formed by the two mechanisms, but with different spatial profiles. Numerical modelling shows how the spatial profile influences the reverse bias current.


2013 ◽  
Vol 740-742 ◽  
pp. 881-886 ◽  
Author(s):  
Hiroyuki Okino ◽  
Norifumi Kameshiro ◽  
Kumiko Konishi ◽  
Naomi Inada ◽  
Kazuhiro Mochizuki ◽  
...  

The reduction of reverse leakage currents was attempted to fabricate 4H-SiC diodes with large current capacity for high voltage applications. Firstly diodes with Schottky metal of titanium (Ti) with active areas of 2.6 mm2 were fabricated to investigate the mechanisms of reverse leakage currents. The reverse current of a Ti Schottky barrier diode (SBD) is well explained by the tunneling current through the Schottky barrier. Then, the effects of Schottky barrier height and electric field on the reverse currents were investigated. The high Schottky barrier metal of nickel (Ni) effectively reduced the reverse leakage current to 2 x 10-3 times that of the Ti SBD. The suppression of the electric field at the Schottky junction by applying a junction barrier Schottky (JBS) structure reduced the reverse leakage current to 10-2 times that of the Ni SBD. JBS structure with high Schottky barrier metal of Ni was applied to fabricate large chip-size SiC diodes and we achieved 30 A- and 75 A-diodes with low leakage current and high breakdown voltage of 4 kV.


2005 ◽  
Vol 862 ◽  
Author(s):  
Yu. Vygranenko ◽  
J. H. Chang ◽  
A. Nathan

AbstractThis paper presents a two-dimensional a–Si:H/a-SiC:H n–i–p photodiode array with switching diode readout, developed specifically for fluorescence-based bio-assays. Both device structure and fabrication processing has enabled enhancement of the external quantum efficiency of the encapsulated device up to 80%, reduction of the photodiode leakage down to 10 pA/cm2 at -1V reverse bias, and increase of the rectification current ratio of the switching diodes up to 109. The critical fabrication issues associated with deposition of device-quality materials, tailoring of defects at the i–p interface, device patterning with dry etching, junction passivation, and contact formation will be discussed. Both sensing and switching diodes were characterized. While the observed dark current in the photodiodes at low reverse bias voltages is primarily due to carrier emission from deep states in the a–Si:H bulk, the leakage in the small switching diodes stems from peripheral defects along junction sidewalls. Optical losses in the photodiodes with ITO/a–SiNx:H antireflection coating were evaluated using numerical modeling, and the calculated transmission spectra correlated well with the spectral response characteristics. Measurements of the charge transfer time and output linearity demonstrated the efficiency of the single-switching diode readout configuration. The response of the array to optical excitation was also investigated. The observed long term retardation in the signal rise and decay at illumination levels less than 1010 photons/cm2-s can be associated with charge trapping in the undoped layer.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 935
Author(s):  
Ruining Huang ◽  
Ying Yi ◽  
Erlei Zhu ◽  
Xiaogang Xiong

Micro-electro-discharge machining (μEDM) plays a significant role in miniaturization. Complex electrode manufacturing and a high wear ratio are bottlenecks for μEDM and seriously restrict the manufacturing of microcomponents. To solve the electrode problems in traditional EDM, a µEDM method using liquid metal as the machining electrode was developed. Briefly, a liquid-metal tip was suspended at the end of a capillary nozzle and used as the discharge electrode for sparking the workpiece and removing workpiece material. During discharge, the liquid electrode was continuously supplied to the nozzle to eliminate the effects of liquid consumption on the erosion process. The forming process of a liquid-metal electrode tip and the influence of an applied external pressure and electric field on the electrode shape were theoretically analyzed. The effects of external pressure and electric field on the material removal rate (MRR), liquid-metal consumption rate (LMCR), and groove width were experimentally analyzed. Simulation results showed that the external pressure and electric field had a large influence on the electrode shape. Experimental results showed that the geometry and shape of the liquid-metal electrode could be controlled and constrained; furthermore, liquid consumption could be well compensated, which was very suitable for µEDM.


2007 ◽  
Vol 556-557 ◽  
pp. 917-920 ◽  
Author(s):  
Francesco Moscatelli ◽  
Andrea Scorzoni ◽  
Antonella Poggi ◽  
Mara Passini ◽  
Giulio Pizzocchero ◽  
...  

In this work we analyzed the radiation hardness of SiC p+n diodes after very high 1 MeV neutron fluence. The diode structure is based on a p+ emitter ion implanted in n-type epilayer with thickness equal to 5 %m and donor doping ND = 3×1015 cm-3. Before irradiation, the average leakage current density at 100 V reverse bias was of the order of 3 nA/cm2. These devices were irradiated at four different fluence values, logarithmically distributed in the range 1014-1016 (1 MeV) neutrons/cm2. After irradiation the epilayer material became more resistive, as indicated by the reduction of the forward and reverse current density at a given voltage. In particular, after a neutron fluence of 1×1014 n/cm2 the epilayer active doping concentration decreased to 1.5×1015 cm-3. After irradiation at 1016 n/cm2, i.e. the highest fluence value, the average leakage current density at 100 V reverse bias decreased to values of the order of 0.1 nA/cm2. This very low noise even after very high fluence is very important to obtain a high signal to noise ratio even at room temperature.


Sign in / Sign up

Export Citation Format

Share Document