Electrical and Structural Properties of MeV Si+ Ion Implantation in Silicon

1995 ◽  
Vol 378 ◽  
Author(s):  
Aditya Agarwal ◽  
S. Koveshnikov ◽  
K. Christensen ◽  
G. A. Rozgonyi

AbstractThe electrical properties of residual MeV ion implantation damage in Si after annealing from 600 to 1100°C for 1 hour have been investigated using Deep Level Transient Spectroscopy, Capaciatance-Voltage, and Current-Voltage measurements. These data have been correlated with structural defects imaged by Transmission Electron Microscopy. It is shown that at least 4 deep levels are associated with the buried layer of extended defects after annealing at 800, 900, 1000 and 1100°C. Additionally, for the wafer annealed at 800°C at least 5 more deep level centers are present in the device layer above the buried defects.

1998 ◽  
Vol 510 ◽  
Author(s):  
D.Z. Chi ◽  
S. Ashok ◽  
D. Theodore

AbstractThermal evolution of ion implantation-induced defects and the influence of concurrent titanium silicidation in pre-amorphized p-type Si (implanted with 25 KeV, 1016 cm2Si+) under rapid thermal processing (RTP) have been investigated. Presence of implantation-induced electrically active defects has been confirmed by current-voltage (IV) and deep level transient spectroscopy (DLTS) measurements. DLTS characterization results show that the evolution of electrically active defects in the Si implanted samples under RTP depend critically on the RTP temperature: Hole traps HI (0.33 eV) and H4 (0.47 eV) appear after the highest temperature (950 °C) anneal, while a single trap H3 (0.26 eV) shows up at lower anneal temperatures (≤ 900 °C). The thermal signature of H4 defect is very similar to that of the iron interstitial while those of HI and H3 levels appear to originate from some interstitial-related defects, possibly complexes. A most interesting finding is that the above interstitial related defects can be eliminated completely with Ti silicidation, apparently a result of vacancy injection. However the silicidation process itself introduces a new H2 (0.30 eV) level, albeit at much lower concentration. This same H2 level is also seen in unimplanted samples under RTP. The paper will present details of defect evolution under various conditions of RTP for samples with and without the self-implantation and silicidation.


1998 ◽  
Vol 510 ◽  
Author(s):  
Shabih Fatima ◽  
Jennifer Wong-Leung ◽  
John Fitz Gerald ◽  
C. Jagadish

AbstractSubthreshold damage in p-type Si implanted and annealed at elevated temperature is characterized using deep level transient spectroscopy (DLTS) and transmission electron microscopy (TEM). P-type Si is implanted with Si, Ge and Sn with energies in the range of 4 to 8.5 MeV, doses from 7 × 1012to 1×1014cm−2and all annealed at 800°C for 15 min. For each implanted specie, DLTS spectra show a transition dose called threshold dose above which point defects transform in to extended defects. DLTS measurements have shown for the doses below threshold, a sharp peak, corresponding to the signature of point defects and for doses above threshold a broad peak indicating the presence of extended defects. This is found to be consistent with TEM analyses where no defects are seen for the doses below threshold and the presence of extended defects for the doses above threshold. This suggests a defect transformation regime where point defects present below threshold are acting like nucleating sites for the extended defects. Also the mass dependence on the damage evolution has been observed, where rod-like defects are observed in the case of Si and (rod-like defects and loops) for Ge and Sn despite the fact that peak concentration of vacancies for Ge and Sn are normalized to the peak number of vacancies for Si.


2009 ◽  
Vol 615-617 ◽  
pp. 397-400 ◽  
Author(s):  
Gaetano Izzo ◽  
Grazia Litrico ◽  
Andrea Severino ◽  
Gaetano Foti ◽  
Francesco La Via ◽  
...  

The defects produced by 7.0 MeV C+ irradiation in 4H-SiC epitaxial layer were followed by Deep Level Transient Spectroscopy, current-voltage measurements and Transmission Electron Microscopy in a large fluence range (109-51013 ions/cm2). At low fluence (109 -1010 ions/cm2), the formation of three main level defects located at 0.68 eV, 0.98 eV and 1.4 eV below the conduction band edge is detected. The trap concentration increases with ion fluence suggesting that these levels are associated to the point defects generated by ion irradiation. In this fluence range the leakage current of the diodes does not change. At higher fluence an evolution of defects occurs, as the concentration of traps at 0.68 eV and 1.4 eV decreases, while the intensity of the level at 0.98 eV remains constant. In this fluence range complex defects are formed and an increase of a factor five in the leakage current is measured.


2021 ◽  
Vol 91 (12) ◽  
pp. 2026
Author(s):  
Ф.Ф. Комаров ◽  
C.Б. Ластовский ◽  
И.А. Романов ◽  
И.Н. Пархоменко ◽  
Л.А. Власукова ◽  
...  

Silicon layers doped with tellurium up to concentration (3–5)·1020 cm-3 have been formed by ion implantation with subsequent pulsed laser annealing. It was shown that 70–90% of the introduced impurity is in the substitution position in the silicon lattice. Si layers Tellurium- hyperdoped silicon layers exhibit significant absorption (35–65%) both in the visible and near IR (1100–2500 nm) spectral ranges, and the absorption increases with increasing wavelength. The current-voltage and capacitance-voltage characteristics, as well as the photosensitivity of photodetectors based on Te-doped silicon layers have been presented and discussed. The residual structural defects in implanted Si layers have been considered by deep-level transient spectroscopy.


1986 ◽  
Vol 82 ◽  
Author(s):  
Stephen T. Johnson ◽  
J.S. Williams ◽  
R.G. Elliman ◽  
A.P. Pogany ◽  
E. Nygren ◽  
...  

ABSTRACTIn-situ time resolved reflectivity, Rutherford backscattering and channeling and transmission electron microscopy have been employed to characterise the evolution of Ar+ ion implantation damage in GaAs as a function of ion dose at various irradiation temperatures. Specific reflectivity signatures have been identified and characterised in terms of observed structural changes to the GaAs. Reflectivity provides a simple and convenient means of monitoring damage build up during ion implantation. In contrast to accepted models for amorphous phase formation in semiconductors, GaAs has been observed to undergo a sudden transformation from a crystal containing a dense network of extended defects to an amorphous phase under elevated temperature irradiation conditions.


1992 ◽  
Vol 279 ◽  
Author(s):  
L. He ◽  
W. A. Anderson

ABSTRACTFluorine, boron and oxygen implantation in GaAs has been investigated by electrical characterization using current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Ion implantation at lOOkeV energy was conducted with doses of 1011 and 1012/cm2. Carrier compensation was observed in each implanted sample. The compensation effect strongly depended on ion implantation conditions and ion species. Severe surface damage was also induced which degrades electrical performance. Rapid thermal annealing (RTA) treatment showed the heavier ion implanted samples to be more thermally stable. Defect levels for each implanted species were compared and identified.


1992 ◽  
Vol 281 ◽  
Author(s):  
H. Ohyama ◽  
J. Vanhellemont ◽  
M.-A. Trauwaert ◽  
J. Poortmans ◽  
M. Caymax ◽  
...  

ABSTRACT1007×100 μm2 n+− Si/p-Si1−x Gex diodes fabricated on conventional p-type Si substrates are irradiated at room temperature with 1-MeV electrons with fluences from 1.0×1014 to 1.0×1015 e/cm2 in a high voltage transmission electron microscope. The boron concentration and germanium fraction of the Si1−x Gex epitaxial layer used for the diodes in this study are 5×1017 cm−3 and x = 0.12, respectively. The degradation of diodes is investigated by means of current/voltage and capacitance/voltage measurements. The characteristics of the electrically active defects induced in the Si1−x Gex epitaxial layer by irradiation are also examined by using deep level transient spectroscopy and capacitance/temperature measurements. The degradation of the diode performance and the presence of deep levels are investigated as a function of electron fluence. In order to examine the recovery process, an isochronal thermal anneal is performed in the temperature range between 100 and 400°C.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1966
Author(s):  
Domenico Pellegrino ◽  
Lucia Calcagno ◽  
Massimo Zimbone ◽  
Salvatore Di Franco ◽  
Antonella Sciuto

In this study, 4H-SiC p–n junctions were irradiated with 700 keV He+ ions in the fluence range 1.0 × 1012 to 1.0 × 1015 ions/cm2. The effects of irradiation were investigated by current–voltage (I–V) and capacitance–voltage (C–V) measurements, while deep-level transient spectroscopy (DLTS) was used to study the traps introduced by irradiation defects. Modifications of the device’s electrical performances were observed after irradiation, and two fluence regimes were identified. In the low fluence range (≤1013 ions/cm2), I–V characteristics evidenced an increase in series resistance, which can be associated with the decrease in the dopant concentration, as also denoted by C–V measurements. In addition, the pre-exponential parameter of junction generation current increased with fluence due to the increase in point defect concentration. The main produced defect states were the Z1/2, RD1/2, and EH6/7 centers, whose concentrations increased with fluence. At high fluence (>1013 ions/cm2), I–V curves showed a strong decrease in the generation current, while DLTS evidenced a rearrangement of defects. The detailed electrical characterization of the p–n junction performed at different temperatures highlights the existence of conduction paths with peculiar electrical properties introduced by high fluence irradiation. The results suggest the formation of localized highly resistive regions (realized by agglomeration of point defects) in parallel with the main junction.


2006 ◽  
Vol 957 ◽  
Author(s):  
Yahya Alivov ◽  
Xiao Bo ◽  
Fan Qian ◽  
Daniel Johnstone ◽  
Cole Litton ◽  
...  

ABSTRACTThe conduction band offset of n-ZnO/n-6H-SiC heterostructures fabricated by rf-sputtered ZnO on commercial n-type 6H-SiC substrates has been measured. Temperature dependent current-voltage characteristics, photocapacitance, and deep level transient spectroscopy measurements showed the conduction band offsets to be 1.25 eV, 1.1 eV, and 1.22 eV, respectively.


2005 ◽  
Vol 108-109 ◽  
pp. 279-284 ◽  
Author(s):  
O.F. Vyvenko ◽  
N.V. Bazlov ◽  
M.V. Trushin ◽  
A.A. Nadolinski ◽  
Michael Seibt ◽  
...  

Influence of annealing in molecular hydrogen as well as of treatment in hydrogen plasma (hydrogenation) on the electrical properties of NiSi2 precipitates in n- and p-type silicon has been studied by means of deep level transient spectroscopy (DLTS). Both annealing and hydrogenation gave rise to noticeable changes of the shape of the DLTS-peak and of the character of its dependence on the refilling pulse duration that according to [1] allows one to classify the electronic states of extended defects as “band-like” or “localized”. In both n- and p-type samples DLTS-peak in the initial as quenched samples showed bandlike behaviour. Annealing or hydrogenation of n-type samples converted the band-like states to the localised ones but differently shifted the DLTS-peak to higher temperatures. In p-type samples, the initial “band-like” behaviour of DLTS peak remained qualitatively unchanged after annealing or hydrogenation. A decrease of the DLTS-peak due to precipitates and the appearance of the peaks due to substitutional nickel and its complexes were found in hydrogenated p-type sample after removal of a surface layer of 10-20µm.


Sign in / Sign up

Export Citation Format

Share Document