Schottky Diodes on Si1-x-yGexCy Alloys.

1995 ◽  
Vol 379 ◽  
Author(s):  
M. Mamnor ◽  
C. Guedj ◽  
P. Boucaud ◽  
F. Meyer ◽  
D. Bouchier ◽  
...  

ABSTRACTWe have recently investigated the properties of W/Si1-xGex films prepared by rapid thermal chemical vapor deposition (RTCVD). The barrier height on p-type, ΦBp, varies as the band gap with the germanium content for totally relaxed films, and increases with strain relaxation, while that on n-type remains rather constant. These results suggest that the Fermi level is pinned relative to the conduction band at the interface of the binary alloy and that the measurement of Schottky barriers is a suitable tool to follow band gap variations. In this work, the effects of carbon incorporation on Schottky barriers have been investigated. The study has been performed on Si1-x-yGexCy films (0≤y≤1.35% with x=10%). The strain retained in the films was determined by X-ray diffraction. Infrared absorption measurements have shown that the carbon is incorporated on substitutional sites. The electrical results indicate the same trends than those observed on the binary alloys, the barrier height on n-type remains rather constant while the barrier height on p-type varies. Adding C leads to an increase of ΦBp, but this increase is too large to be explained in terms of variation of the band gap. The influence of other parameters, such as the doping level and the hole effective mass is discussed.


1995 ◽  
Vol 402 ◽  
Author(s):  
Z. Q. Shiâ ◽  
L. He ◽  
Y. Zheng

AbstractThe potential application of epitaxial Si1−xGex, on Si in electronic and optoelectronic devices has led to an increased study of metal - Si1−xGex interaction and barrier height control technique. In this paper, we report the epitaxial growth of Si1−xGex on Si and the Schottky barrier formation processing. The Si1−xGex (x=0.17 and 0.20) layers were grown by rapid radiant heating, very low pressure chemical vapor deposition (VLPCVD). The crystal structure and epitaxial nature of the Si1−xGex, layers were studied by X-Ray diffraction. The value of full width at half maximum (FWHM) was found to be 0.34° for the as grown Si1−xGex (400) peak. The metal-Si1−xGex/Si Schottky diodes were formed by depositing Pd on Si1−xGex/Si at room temperature (RT=300K) and low temperature (LT=77K). The Schottky barrier heights and current transport mechanisms were determined by current-voltage-temperature (I-V-T) measurements. The interface property of Pd/ Si1−xGex/Si were studied as a function of metal deposition and post annealing temperatures.



1993 ◽  
Vol 320 ◽  
Author(s):  
V. Aubry ◽  
F. Meyer ◽  
R. Laval ◽  
C. Clerc ◽  
P. Warren ◽  
...  

ABSTRACTThermal reaction of W with Si1−xGex films epitaxially grown by Rapid Thermal Chemical Vapor Deposition was investigated in the temperature range 500°C - 1000°C. The samples were annealed either in a Rapid Thermal Annealing (RTA) system or in a conventional furnace, both in flowing nitrogen. The reaction products were investigated by Rutherford Backscattering Spectroscopy (RBS), Energy Dispersive Spectrometry (EDS) and X-ray diffraction (XRD). Sheet resistance measurements were also performed to follow the progress of the reaction. The reaction of W with Si0.67Ge0.33 is similar to that of W with silicon. W reacts with silicon to form tetragonal WSi2. The Ge-content in the silicide is lower than that of the asdeposited alloy. It is shown that an oxygen contamination occurs during conventional annealing and leads to the formation of non homogeneous Si1−x Gex unreacted alloy below the silicide film. Rapid thermal annealing prevents this parasitic effect and the unreacted film remains homogeneous although a slight decrease in the Ge-content is observed. These results are correlated with Schottky barrier height measurements on p-Si0.83Ge0.17 partially strained films. We observed an increase of the barrier height with increasing the temperature for annealing from 500°C to 1000°C. This trend may be explained either by strain relaxation or (and) Ge-content decrease in the unreacted alloy.



1994 ◽  
Vol 356 ◽  
Author(s):  
M. Mamor ◽  
E. Finkman ◽  
F. Meyer ◽  
K. Bouziane

AbstractThe Schottky barrier heights (ΦB) for W/Si Schottky diodes have been determined from I–V measurements. The effects of the sputter deposition conditions of the W-films were studied. X-ray diffraction was used to examine the structure and the lattice parameters of the W-films while the stress was determined by using a profilometer from the measurement of the curvature of the substrate after metallization. The resistivity is determined by using a four-point probe. A compressive-to-tensile stress transition is associated with the transformation of the ±—W-phase into the (β—W-phase as the working gas pressure is increased. These effects, which are frequently observed, coïncide with a significant increase of the W-film resistivity and a change (△ΦB≈50 meV) in the Schottky barrier height on n-type. On the other hand, the barrier height on the p-type remains constant under all the experimental conditions investigated. These results are discussed in terms of effects of strain and structure of W-films on the work function of the W, as well as in terms of modification of the pinning position of the Fermi level or else change in the value of the Richardson constant.



1996 ◽  
Vol 449 ◽  
Author(s):  
P. Kung ◽  
A. Saxler ◽  
D. Walker ◽  
X. Zhang ◽  
R. Lavado ◽  
...  

ABSTRACTWe present the metalorganic chemical vapor deposition growth, n-type and p-type doping and characterization of AlxGa1-xN alloys on sapphire substrates. We report the fabrication of Bragg reflectors and the demonstration of two dimensional electron gas structures using AlxGa1-xN high quality films. We report the structural characterization of the AlxGa1-xN / GaN multilayer structures and superlattices through X-ray diffraction and transmission electron microscopy. A density of screw and mixed threading dislocations as low as 107 cm-2 was estimated in AlxGa1-xN / GaN structures. The realization of AlxGa1-xN based UV photodetectors with tailored cut-off wavelengths from 365 to 200 nm are presented.



1999 ◽  
Vol 572 ◽  
Author(s):  
W. C. Lai ◽  
M. Yokoyama ◽  
C. Y. Chang ◽  
J. D. Guo ◽  
J. S. Tsang ◽  
...  

ABSTRACTCopper Schottky diodes on n-type GaN grown by metal-organic chemical vapor deposition were achieved and investigated. Ti/Al was used as the ohmic contact. The copper metal is deposited by the Sputter system. The barrier height was determined to be as high as (ΦB =1.13eV by current-voltage (I-V) method and corrected to be ΦB =1.35eV as considered the ideality factor, n, with the value of 1.2. By the capacitance-voltage (C-V) method, the barrier height is determined to be ΦB =1.41eV. Both results indicate that the sputtered copper metal is a high barrier height Schottky metal for n-type GaN.



1991 ◽  
Vol 44 (1) ◽  
pp. 67 ◽  
Author(s):  
Vincent WL Chin ◽  
Stephen M Newbery ◽  
John WV Storey ◽  
Ulrich Theden

The effect of sintering temperature on the barrier height of p-type PtSi Schottky diodes is studied by electrical and infrared photoresponse methods. It is revealed that there is a consistent difference of about 0�06 eV for two samples sintered at different temperatures.



1999 ◽  
Vol 607 ◽  
Author(s):  
B. Aslan ◽  
R. Turan ◽  
O. Nur ◽  
M. Karlsteen ◽  
M. Willander

AbstractA Schottky type infrared detector fabricated on a p-type Si1−xGex substrate has a higher cut-off wavelength than one on a pure Si substrate because the barrier height of the Schottky junction on p-type Si1−xGex decreases with the Ge content and the induced strain in the Si1−xGex layer. We have studied the effect of the strain relaxation on the internal photoemission and I-V characteristics of a Pt/Si1−xGex Schottky junction with x=0.14. It is shown that the cut-off wavelength of the diode made on a strained Si0.86Ge0.14 layer is higher than that on a Si substrate as expected. This shows the possibility of tuning the range of these detectors in the mid-infrared region. However, the thermal relaxation in the Si0.86Ge0.14 layer is found to reduce the cut-off wavelength to lower values, showing that the difference between the Fermi level of the metal and the valence band edge increases with the layer relaxation. This effect should be taken into account when a Schottky type infrared detector is manufactured on a strained Si1−xGex film. I-V characteristics of the junctions also indicate an increase of the barrier height with the relaxation of Si1−xGex. These results demonstrate the band edge movements in a Si ixGex layer experimentally agree with the expected changes in the band structure of the Si1−xGex layer with strain relaxation.



1997 ◽  
Vol 470 ◽  
Author(s):  
Patricia Warren ◽  
Stephane Retzmanick ◽  
Martin Gotza ◽  
Marc Begems

ABSTRACTSi / Si1-x-yGexCy / Si heterostructures containing up to 17 at.% Ge and 1.9 at.% C were grown on (001) silicon by low pressure Rapid Thermal Chemical Vapor Deposition, using a mixture of silane, germane and methylsilane, diluted in hydrogen. The samples were then annealed in a Rapid Thermal Processing furnace, under an atmospheric pressure of nitrogen, at temperatures ranging from 900 to 1130 °C.The samples were characterized using infrared spectroscopy and x-ray diffraction. SIMS profiling and TEM observation were performed on some of the samples.Substitutional C gradually disappeared, either precipitating out to form cubic silicon carbide (β-SiC), or simply vanishing into interstitial positions. In any case, the in-plane lattice constant remained constant after annealing, indicating that there was no mechanical strain relaxation by formation of misfit dislocations. The perpendicular lattice constant increased due to the decrease in substitutional C concentration, as well as it decreased due to the germanium out-diffusion. This variation of the strain during annealing was modeled, and allowed the determination of the kinetics of the substitutional carbon disappearance. The same behavior was observed for all samples. Indeed, the Cs disappearance rate was always increased for samples with higher initial Ge and C concentrations. The kinetics of this precipitation was found in very good agreement with previous published results.



2002 ◽  
Vol 16 (01n02) ◽  
pp. 308-313 ◽  
Author(s):  
YUE WANG ◽  
HAO GONG ◽  
LING LIU

P-type transparent conducting oxide thin films have attracted much attention due to their potential applications in novel transparent p-n junction devices. In this work, the transparent conducting Cu-Al-O thin films were prepared by the plasma enhanced chemical vapor deposition using metal organic precursors of Cu(acac) 2 and Al(acac) 3 (acac=acetylacetonate) while the substrate temperature was varied from 700 to 800°C. The x-ray diffraction and SEM results are analyzed to investigate the structure of the as-deposited and annealed films. The films contain metal copper and small grains of CuAlO 2. After annealing, metal copper turned into CuO . Hall effect measurements reveal that these films are p-type semiconductors and the film conductivity increased with the growth temperature.



2012 ◽  
Vol 490-495 ◽  
pp. 3840-3844
Author(s):  
W. Cheng ◽  
P. Han ◽  
F. Yu ◽  
L. Yu ◽  
L.H. Cheng ◽  
...  

In this work, the Si layer is deposited on the SiC complex substrate which is composed of Si(111) substrate and 3C-SiC film grown on it. These Si and 3C–SiC films grown under different temperatures in a chemical vapor deposition system are analyzed. The crystalline orientation, the crystalline quality and the conduction type of the films are measured by X-ray diffraction, Raman scattering ,Scanning electron microscope, and 1150 °C is found the optimized temperature for the epitaxial growth of SiC film grown on the carbonized layer. Measurement results also show that the epitaxial layer is n-type 3C-SiC which has the same crystalline orientation with the Si (111) substrate. Si film grown on the SiC complex substrate under the temperature of 690 °C has the best crystalline quality. This film is composed of p-type monocrystal Si and has the same crystalline orientation with the substrate.



Sign in / Sign up

Export Citation Format

Share Document