Barrier Height Control and X-Ray Diffraction Study of Metal on Si1−Gex/Si Grown by Very Low Pressure CVD

1995 ◽  
Vol 402 ◽  
Author(s):  
Z. Q. Shiâ ◽  
L. He ◽  
Y. Zheng

AbstractThe potential application of epitaxial Si1−xGex, on Si in electronic and optoelectronic devices has led to an increased study of metal - Si1−xGex interaction and barrier height control technique. In this paper, we report the epitaxial growth of Si1−xGex on Si and the Schottky barrier formation processing. The Si1−xGex (x=0.17 and 0.20) layers were grown by rapid radiant heating, very low pressure chemical vapor deposition (VLPCVD). The crystal structure and epitaxial nature of the Si1−xGex, layers were studied by X-Ray diffraction. The value of full width at half maximum (FWHM) was found to be 0.34° for the as grown Si1−xGex (400) peak. The metal-Si1−xGex/Si Schottky diodes were formed by depositing Pd on Si1−xGex/Si at room temperature (RT=300K) and low temperature (LT=77K). The Schottky barrier heights and current transport mechanisms were determined by current-voltage-temperature (I-V-T) measurements. The interface property of Pd/ Si1−xGex/Si were studied as a function of metal deposition and post annealing temperatures.

1994 ◽  
Vol 356 ◽  
Author(s):  
M. Mamor ◽  
E. Finkman ◽  
F. Meyer ◽  
K. Bouziane

AbstractThe Schottky barrier heights (ΦB) for W/Si Schottky diodes have been determined from I–V measurements. The effects of the sputter deposition conditions of the W-films were studied. X-ray diffraction was used to examine the structure and the lattice parameters of the W-films while the stress was determined by using a profilometer from the measurement of the curvature of the substrate after metallization. The resistivity is determined by using a four-point probe. A compressive-to-tensile stress transition is associated with the transformation of the ±—W-phase into the (β—W-phase as the working gas pressure is increased. These effects, which are frequently observed, coïncide with a significant increase of the W-film resistivity and a change (△ΦB≈50 meV) in the Schottky barrier height on n-type. On the other hand, the barrier height on the p-type remains constant under all the experimental conditions investigated. These results are discussed in terms of effects of strain and structure of W-films on the work function of the W, as well as in terms of modification of the pinning position of the Fermi level or else change in the value of the Richardson constant.


1993 ◽  
Vol 335 ◽  
Author(s):  
M. J. Cook ◽  
P. K. Wu ◽  
N. Patibandla ◽  
W. B. Hillig ◽  
J. B. Hudson

AbstractAluminum nitride films were deposited on Si (100) and sapphire (1102) substrates by low pressure chemical vapor deposition using the metalorganic precursor trisdimethylaluminum amide, [(CH3)2AlNH2]3. Depositions were carried out in a cold wall reactor with substrate temperatures between 500 and 700 °C and precursor temperatures between 50 and 80 °C. The films were analyzed by X-ray photoelectron spectroscopy, X-ray diffraction, optical microscopy and scanning electron microscopy. The films were generally smooth and adherent with colors ranging from transparent to opaque grey. Cracking and spallation were seen to occur at high film thickness. Deposition rates ranged from 20 to 300 Å/min and increased with both precursor and substrate temperature. Carbon concentrations were small, < 5 at. %, while oxygen concentrations were higher and showed a characteristic profile versus depth in the film. High temperature compatibility testing with sapphire/AlN/MoSi2 samples was carried out to determine film effectiveness as a fiber coating in a composite.


1995 ◽  
Vol 379 ◽  
Author(s):  
M. Mamnor ◽  
C. Guedj ◽  
P. Boucaud ◽  
F. Meyer ◽  
D. Bouchier ◽  
...  

ABSTRACTWe have recently investigated the properties of W/Si1-xGex films prepared by rapid thermal chemical vapor deposition (RTCVD). The barrier height on p-type, ΦBp, varies as the band gap with the germanium content for totally relaxed films, and increases with strain relaxation, while that on n-type remains rather constant. These results suggest that the Fermi level is pinned relative to the conduction band at the interface of the binary alloy and that the measurement of Schottky barriers is a suitable tool to follow band gap variations. In this work, the effects of carbon incorporation on Schottky barriers have been investigated. The study has been performed on Si1-x-yGexCy films (0≤y≤1.35% with x=10%). The strain retained in the films was determined by X-ray diffraction. Infrared absorption measurements have shown that the carbon is incorporated on substitutional sites. The electrical results indicate the same trends than those observed on the binary alloys, the barrier height on n-type remains rather constant while the barrier height on p-type varies. Adding C leads to an increase of ΦBp, but this increase is too large to be explained in terms of variation of the band gap. The influence of other parameters, such as the doping level and the hole effective mass is discussed.


1982 ◽  
Vol 18 ◽  
Author(s):  
R. Purtell ◽  
P. S. Ho ◽  
G. W. Rubloff ◽  
G. Holinger

The binding energy of the bulk Si 2p levels observed with soft X-ray photoemission can be used to monitor the band bending in the silicon space charge region when a metal is deposited onto the silicon surface. Changes in the 2p binding energy with metal coverage can then be used to determine the change in the Schottky barrier height as the metal-silicon contact is formed. By tuning the photon energy and therefore the photoemitted electron escape depth, chemical shifts (atomic environment effects) at the interface can be separated from the bulk band bending effects. When combined with annealing to produce in-depth atomic intermixing, the result may reveal information on the distribution of metal atoms at the interface and its effect on the barrier height.Measurements of the Schottky barrier height change as a function of palladium deposition were made on (2 × 1) p-type and (7 × 7) n-type Si(111) surfaces by monitoring Si 2p core level shifts in a bulk sensitive mode. The barrier height change reached 1/e of its final value at a palladium coverage of 2.9 Å. Several experiments have made it possible to relate the measured Si 2p core level monitor of band bending to absolute Schottky barrier heights in a fully consistent fashion. Therefore, these results provide a means to measure the barrier height in the initial stages of Schottky barrier formation (i.e. at low metal coverage) and to compare these observations with the chemical behavior of the interface at low coverage and with electrical measurements on bulk contacts. Since the Pd/Si Schottky barrier height is established at the bulk value within a coverage of 3–5 Å (even before the overlayer is metallic), the role of interface chemical bonds in determining the barrier height is paramount.This work was supported in part by the U.S. Office of Naval Research.


Author(s):  
Ogün Baris Tapar ◽  
Jérémy Epp ◽  
Matthias Steinbacher ◽  
Jens Gibmeier

AbstractAn experimental heat treatment chamber and control system were developed to perform in-situ X-ray diffraction experiments during low-pressure carburizing (LPC) processes. Results from the experimental chamber and industrial furnace were compared, and it was proven that the built system is reliable for LPC experiments. In-situ X-ray diffraction investigations during LPC treatment were conducted at the German Electron Synchrotron Facility in Hamburg Germany. During the boost steps, carbon accumulation and carbide formation was observed at the surface. These accumulation and carbide formation decelerated the further carbon diffusion from atmosphere to the sample. In the early minutes of the diffusion steps, it is observed that cementite content continue to increase although there is no presence of gas. This effect is attributed to the high carbon accumulation at the surface during boost steps which acts as a carbon supply. During quenching, martensite at higher temperature had a lower c/a ratio than later formed ones. This difference is credited to the early transformation of austenite regions having lower carbon content. Also, it was noticed that the final carbon content dissolved in martensite reduced compared to carbon in austenite before quenching. This reduction was attributed to the auto-tempering effect.


1990 ◽  
Vol 5 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
A. D. Berry ◽  
R. T. Holm ◽  
M. Fatemi ◽  
D. K. Gaskill

Films containing the metals copper, yttrium, calcium, strontium, barium, and bismuth were grown by organometallic chemical vapor deposition (OMCVD). Depositions were carried out at atmospheric pressure in an oxygen-rich environment using metal beta-diketonates and triphenylbismuth. The films were characterized by Auger electron spectroscopy, Nomarski and scanning electron microscopy, and x-ray diffraction. The results show that films containing yttrium consisted of Y2O3 with a small amount of carbidic carbon, those with copper and bismuth were mixtures of oxides with no detectable carbon, and those with calcium, strontium, and barium contained carbonates. Use of a partially fluorinated barium beta-diketonate gave films of BaF2 with small amounts of BaCO3.


2011 ◽  
Vol 383-390 ◽  
pp. 7619-7623
Author(s):  
Z Z Lu ◽  
F. Yu ◽  
L. Yu ◽  
L. H. Cheng ◽  
P. Han

In this work, Si, Ge element composition distribution in Ge /Si1-xGex:C /Si substrate structure has been characterized and modified by planar scanning energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The Ge /Si1-xGex:C /Si substrate samples are grown by chemical vapor deposition (CVD) method. The accuracy of EDS value can be improved by ~ 32%. And the modified EDS results indicate the Ge distribution in the Ge/Si1-xGex:C/Si sub structure.


1988 ◽  
Vol 126 ◽  
Author(s):  
M. Razeghi ◽  
M. Defour ◽  
F. Omnes ◽  
J. Nagle ◽  
P. Maurel ◽  
...  

ABSTRACTHigh quality GaAs and InP have been grown on silicon substrates, using low pressure metalorganic chemical vapor deposition technique. The growth temperature is 550°C and the growth rate 100 A/min.Photoluminescence, X-ray diffraction and electrochemical profiling verified the high quality of these layers. The use of superlattices as buffer layers, (GaAs/GaInP) in the case of GaAs/Si and (GaInAsP/InP) in the case of InP/Si, decreased the amount of misfit dislocations in the epitaxial layer. Carrier concentrations as low as 5.1015 cm−3 have been measured by electrochemical profiling.


Sign in / Sign up

Export Citation Format

Share Document