Towards Large Area Diamond Substrates: The Mosaic Process

1995 ◽  
Vol 416 ◽  
Author(s):  
Ger Janssen ◽  
John J. Schermer ◽  
L. J. Giling

ABSTRACTA method has been developed for producing large area single-crystal diamond plates, suitable for optical and electronic applications. It starts with orienting and closely packing a set of diamond seed crystals with (001) top faces. This assembly, or mosaic, is then joined by a single-crystal overgrowth using a CVD process. A number of assembling techniques have been tested for compatibility with homoepitaxial diamond growth by hot filament assisted CVD and/or growth and etching by the acetylene-oxygen combustion flame. Furthermore a two-step process is described. First an initial layer (20-50/μm) is deposited by hot filament assisted CVD at a low growth rate in order to bridge the gap between the seeds. Subsequently the fast growth rate of the acetylene-oxygen combustion flame is employed to increase the layer thickness (>250,μm). It was found that both the basic mosaic process as well as the two step process can produce a single-crystal diamond layer on top of mosaics consisting of seed crystals with well aligned crystallographic directions. The width of the gaps between the seed crystals (up to 25 μm) was found to be less critical, while the orientation of the side faces and the direction of the misorientation (i.e. the step flow direction) seem not to effect the successful overgrowth. Apart from the alignment of the seed crystals the most severe problem, which has to be overcome in order to obtain one single-crystal overgrowth, is the occurrence of penetration twins in the joint regions. The largest mosaic structure -up to now- overgrown by CVD consists of seven seed crystals and has a surface area slightly in excess of 1 cm2

1995 ◽  
Vol 416 ◽  
Author(s):  
J. B. Posthill ◽  
D. P. Malta ◽  
T. P. Humphreys ◽  
G. C. Hudson ◽  
R. E. Thomas ◽  
...  

ABSTRACTDevelopment of a diamond homoepitaxial deposition process that utilizes water and-ethanol at a growth temperature of ∼600°C is described. Topographies are excellent, and etch-pit densities (EPD) are in the 106 cm-2 range when growth is done on type Ia C(100) substrates.-This process has been used to epitaxially join diamond single crystals that were bonded in close-proximity to each other. This process of “tiling” single crystal diamonds in close proximity in-order to manufacture a large-area diamond single crystal template is also described. Specially-prepared diamonds that have had their faces and edges oriented to { 100} were coated with-heteroepitaxial Ni, then pressed onto a Si wafer while being heated in an inert gas atmosphere.-The resulting bond is excellent; thereby permitting our 600°C diamond deposition process to-epitaxially join the diamonds. A diamond wafer cutting technology has been addressed using a-specific sequence consisting of: ion implantation, homoepitaxial diamond growth, annealing, and-contactless electrochemical etching. This “lift-off” method of cutting has thus far resulted in a 2mm×O.5mm×17.5μm transparent, synthetic, free-standing, single crystal diamond plate being-fabricated. Raman spectroscopy and EPD show the plate to be comparable to our best-homoepitaxial diamond.


CrystEngComm ◽  
2019 ◽  
Vol 21 (43) ◽  
pp. 6574-6584 ◽  
Author(s):  
Bo Yang ◽  
Qiao Shen ◽  
Zhiyin Gan ◽  
Sheng Liu

To improve the edge regions. Growth using the old substrate holder, the edge quality was improved, but the average growth rate decreased. So, a newly substrate holder was designed. The edge quality and the growth rate were both improved.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 426
Author(s):  
Byeong-Kwan Song ◽  
Hwan-Young Kim ◽  
Kun-Su Kim ◽  
Jeong-Woo Yang ◽  
Nong-Moon Hwang

Although the growth rate of diamond increased with increasing methane concentration at the filament temperature of 2100 °C during a hot filament chemical vapor deposition (HFCVD), it decreased with increasing methane concentration from 1% CH4 –99% H2 to 3% CH4 –97% H2 at 1900 °C. We investigated this unusual dependence of the growth rate on the methane concentration, which might give insight into the growth mechanism of a diamond. One possibility would be that the high methane concentration increases the non-diamond phase, which is then etched faster by atomic hydrogen, resulting in a decrease in the growth rate with increasing methane concentration. At 3% CH4 –97% H2, the graphite was coated on the hot filament both at 1900 °C and 2100 °C. The graphite coating on the filament decreased the number of electrons emitted from the hot filament. The electron emission at 3% CH4 –97% H2 was 13 times less than that at 1% CH4 –99% H2 at the filament temperature of 1900 °C. The lower number of electrons at 3% CH4 –97% H2 was attributed to the formation of the non-diamond phase, which etched faster than diamond, resulting in a lower growth rate.


2016 ◽  
Vol 869 ◽  
pp. 721-726 ◽  
Author(s):  
Divani C. Barbosa ◽  
Ursula Andréia Mengui ◽  
Mauricio R. Baldan ◽  
Vladimir J. Trava-Airoldi ◽  
Evaldo José Corat

The effect of argon content upon the growth rate and the properties of diamond thin films grown with different grains sizes are explored. An argon-free and argon-rich gas mixture of methane and hydrogen is used in a hot filament chemical vapor deposition reactor. Characterization of the films is accomplished by scanning electron microscopy, Raman spectroscopy and high-resolution x-ray diffraction. An extensive comparison of the growth rate values and films morphologies obtained in this study with those found in the literature suggests that there are distinct common trends for microcrystalline and nanocrystalline diamond growth, despite a large variation in the gas mixture composition. Included is a discussion of the possible reasons for these observations.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5964
Author(s):  
Guoqing Shao ◽  
Juan Wang ◽  
Shumiao Zhang ◽  
Yanfeng Wang ◽  
Wei Wang ◽  
...  

Homoepitaxial growth of step-flow single crystal diamond was performed by microwave plasma chemical vapor deposition system on high-pressure high-temperature diamond substrate. A coarse surface morphology with isolated particles was firstly deposited on diamond substrate as an interlayer under hillock growth model. Then, the growth model was changed to step-flow growth model for growing step-flow single crystal diamond layer on this hillock interlayer. Furthermore, the surface morphology evolution, cross-section and surface microstructure, and crystal quality of grown diamond were evaluated by scanning electron microscopy, high-resolution transmission electron microcopy, and Raman and photoluminescence spectroscopy. It was found that the surface morphology varied with deposition time under step-flow growth parameters. The cross-section topography exhibited obvious inhomogeneity in crystal structure. Additionally, the diamond growth mechanism from the microscopic point of view was revealed to illustrate the morphological and structural evolution.


MRS Bulletin ◽  
2014 ◽  
Vol 39 (6) ◽  
pp. 504-510 ◽  
Author(s):  
Matthias Schreck ◽  
Jes Asmussen ◽  
Shinichi Shikata ◽  
Jean-Charles Arnault ◽  
Naoji Fujimori

Abstract


Carbon ◽  
2006 ◽  
Vol 44 (2) ◽  
pp. 374-380 ◽  
Author(s):  
J.B. Donnet ◽  
H. Oulanti ◽  
T. Le Huu ◽  
M. Schmitt

2015 ◽  
Vol 1734 ◽  
Author(s):  
Samuel L. Moore ◽  
Yogesh K. Vohra

ABSTRACTChemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. Altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.


Sign in / Sign up

Export Citation Format

Share Document