Interactions at Metaijinp Interfaces Formed at 300K and 77K

1996 ◽  
Vol 421 ◽  
Author(s):  
J.W. Palmer ◽  
W.A. Anderson ◽  
D.T. Hoelzer ◽  
H. Hardtdegen

AbstractDepositing Pd or Au on n-InP at cryogenic substrate temperatures has previously been found to significantly increase the barrier height of the resulting Schottky diode. Cross-sectional transmission electron microscopy (XTEM) has been performed on Pd/InP and Au/InP interfaces formed at room temperature (RT) and low temperature (LT) to determine the differences responsible for the change in barrier height. In the Pd case, a solid state amorphization which occurs at the interface upon RT metal deposition is nearly eliminated in as-deposited LT Pd/InP diodes. In the Au case, RT deposition results in the initial monolayers of Au entering the InP lattice, while no such effect was observed in the LT Au/InP diodes. It is clear that the LT deposition dramatically reduces the interaction between the metal and substrate, resulting in a greater barrier height. Enhanced barrier height Schottky diodes are crucial to the development of optical and electronic devices on InP. Preliminary results will be discussed on metalsemiconductor- metal (MSM) photodetectors and metal-semiconductor field-effect-transistors (MESFET's) fabricated using the LT process.

Author(s):  
T.E. Pratt ◽  
R.W. Vook

(111) oriented thin monocrystalline Ni films have been prepared by vacuum evaporation and examined by transmission electron microscopy and electron diffraction. In high vacuum, at room temperature, a layer of NaCl was first evaporated onto a freshly air-cleaved muscovite substrate clamped to a copper block with attached heater and thermocouple. Then, at various substrate temperatures, with other parameters held within a narrow range, Ni was evaporated from a tungsten filament. It had been shown previously that similar procedures would yield monocrystalline films of CU, Ag, and Au.For the films examined with respect to temperature dependent effects, typical deposition parameters were: Ni film thickness, 500-800 A; Ni deposition rate, 10 A/sec.; residual pressure, 10-6 torr; NaCl film thickness, 250 A; and NaCl deposition rate, 10 A/sec. Some additional evaporations involved higher deposition rates and lower film thicknesses.Monocrystalline films were obtained with substrate temperatures above 500° C. Below 450° C, the films were polycrystalline with a strong (111) preferred orientation.


Author(s):  
A.E.M. De Veirman ◽  
F.J.G. Hakkens ◽  
W.M.J. Coene ◽  
F.J.A. den Broeder

There is currently great interest in magnetic multilayer (ML) thin films (see e.g.), because they display some interesting magnetic properties. Co/Pd and Co/Au ML systems exhibit perpendicular magnetic anisotropy below certain Co layer thicknesses, which makes them candidates for applications in the field of magneto-optical recording. It has been found that the magnetic anisotropy of a particular system strongly depends on the preparation method (vapour deposition, sputtering, ion beam sputtering) as well as on the substrate, underlayer and deposition temperature. In order to get a better understanding of the correlation between microstructure and properties a thorough cross-sectional transmission electron microscopy (XTEM) study of vapour deposited Co/Pd and Co/Au (111) MLs was undertaken (for more detailed results see ref.).The Co/Pd films (with fixed Pd thickness of 2.2 nm) were deposited on mica substrates at substrate temperatures Ts of 20°C and 200°C, after prior deposition of a 100 nm Pd underlayer at 450°C.


1998 ◽  
Vol 510 ◽  
Author(s):  
R. Jothilingam ◽  
T. Farrell ◽  
T.B. Joyce ◽  
P.J. Goodhew

AbstractWe report the photo modified growth of GaAs by chemical beam epitaxy at substrate temperatures in the range 335 to 670°C using triethygallium (TEG) and arsine. A mercury-xenon lamp (electrical power 200 W) provided the irradiation for the photoassisted growth. The growth was monitored in real time by laser reflectometry (LR) using a 670 nm semiconductor laser, and the optically determined growth rate agreed with that obtained from the layer thickness measured by cross sectional transmission electron microscopy. The observed photo-enhancement of the growth rate at low substrate temperatures and inhibition at high substrate temperatures is thermal in origin, consistent with raising the substrate temperature by 10±3°C. Cross sectional transmission electron microscopy showed that the photoassisted layers are essentially free from dislocations


2004 ◽  
Vol 843 ◽  
Author(s):  
Songqing Wen ◽  
James Bentley ◽  
Jae-il Jang ◽  
G. M. Pharr

ABSTRACTNanoindentations were made on a (100) single crystal Si wafer at room temperature with a series of triangular pyramidal indenters having centerline-to-face angles ranging from 35° to 85°. Indentations produced at high (80 mN) and low (10 mN) loads were examined in plan-view by scanning electron microscopy and in cross-section by transmission electron microscopy. Microstructural observations were correlated with the indentation load-displacement behavior. Cracking and extrusion are more prevalent for sharp indenters with small centerline-to-face angles, regardless of the load. At low loads, the transformed material is amorphous silicon for all indenter angles. For Berkovich indentations made at high-load, the transformed material is a nanocrystalline mix of Si-I and Si-III/Si-XII, as confirmed by selected area diffraction. Extrusion of material at high loads for the cube-corner indenter reduces the volume of transformed material remaining underneath the indenter, thereby eliminating the pop-out in the unloading curve.


2002 ◽  
Vol 16 (08) ◽  
pp. 1261-1267 ◽  
Author(s):  
M. P. SINGH ◽  
S. A. SHIVASHANKAR ◽  
T. SHRIPATHI

We have studied the chemical composition of alumina ( Al 2 O 3) films grown on Si(100) at different substrate temperatures by metalorganic chemical vapor deposition (MOCVD) using aluminium acetylactonate { Al(acac) 3} as the precursor. We have found that the resulting films of Al 2 O 3 contain substantial amounts of carbon. X-ray photoelectron spectroscopy (XPS) was employed to study the chemical state of carbon present in such films. The XPS spectrum reveals that the carbon present in Al 2 O 3 film is graphitic in nature. Auger electron spectroscopy (AES) was employed to study the distribution of carbon in the Al 2 O 3 films. The AES depth profile reveals that carbon is present throughout the film. The AES study on Al 2 O 3 films corroborates the XPS findings. An investigation of the Al 2 O 3/ Si (100) interface was carried out using cross-sectional transmission electron microscopy (XTEM). The TEM study reveals textured growth of alumina film on Si(100), with very fine grains of alumina embedded in an amorphous carbon-containing matrix.


1990 ◽  
Vol 198 ◽  
Author(s):  
R. D. Bringans ◽  
D. K. Biegelsen ◽  
F. A. Ponce ◽  
L.-E. Swartz ◽  
J. C. Tramontana

ABSTRACTZinc selenide films have been grown heteroepitaxially on Si(100) substrates by molecular beam epitaxy. The growth has been carried out for raised substrate temperatures and also at room temperature followed by solid-phase epitaxial (SPE) regrowth. The ZnSe films have been characterized by a number of surface-sensitive techniques and both the interface and the bulk material have been examined with high resolution transmission electron microscopy (HRTEM). We find that an interlayer, which is most likely SiSex, is present between the ZnSe film and the Si substrate for growths made at 300 °C and causes loss of epitaxy. In the case of room temperature deposition and SPE, it is absent, leading to good epitaxy. In the latter situation, the films are very uniform and there is a 4° rotation of the ZnSe crystal axes relative to those of the Si substrate.


1985 ◽  
Vol 46 ◽  
Author(s):  
D. K. Sadana ◽  
J. M. Zavada ◽  
H. A. Jenkinson ◽  
T. Sands

AbstractHigh resolution transmission electron microscopy (HRTEM) has been performed on cross-sectional specimens from high dose (1016 cm−2) H+ implanted (100) GaAs (300 keV at room temperature). It was found that annealing at 500°C created small (20-50Å) loops on {111} near the projected range (Rp)(3.2 μm). At 550-600°C, voids surrounded by stacking faults, microtwins and perfect dislocations were observed near the Rp. A phenomenological model explaining the observed results is proposed.


2004 ◽  
Vol 829 ◽  
Author(s):  
David P. Norton ◽  
Young-Woo Heo ◽  
L C Tien ◽  
M P Ivill ◽  
Y Li ◽  
...  

ABSTRACTZnO is a very promising material for spintronics applications, with many groups reporting room temperature ferromagnetism in films doped with transition metals during growth or by ion implantation. In films doped with Mn during PLD, we find an inverse correlation between magnetization and electron density as controlled by Sn doping. The saturation magnetization and coercivity of the implanted single-phase films were both strong functions of the initial anneal temperature, suggesting that carrier concentration alone cannot account for the magnetic properties of ZnO:Mn and factors such as crystalline quality and residual defects play a role. Plausible mechanisms for the ferromagnetism include the bound magnetic polaron model or exchange is mediated by carriers in a spin-split impurity band derived from extended donor orbitals. We will also review progress in ZnO nanowires. The large surface area of nanorods makes them attractive for gas and chemical sensing, and the ability to control their nucleation sites makes them candidates for micro-lasers or memory arrays. Single ZnO nanowire depletion-mode metal-oxide semiconductor field effect transistors exhibit good saturation behavior, threshold voltage of ∼-3V and a maximum transconductance of 0.3 mS/mm. Under UV illumination, the drain-source current increased by approximately a factor of 5 and the maximum transconductance was ∼ 5 mS/mm. The channel mobility is estimated to be ∼3 cm2 /V.s, comparable to that for thin film ZnO enhancement mode MOSFETs and the on/off ratio was ∼25 in the dark and ∼125 under UV illumination. Pt Schottky diodes exhibit excellent ideality factors of 1.1 at 25 °C, very low reverse currents and a strong photoresponse, with only a minor component with long decay times thought to originate from surface states. In the temperature range from 25–150 °C, the resistivity of nanorods treated in H2 at 400 °C prior to measurement showed an activation energy of 0.089 eV and was insensitive to the ambient used. By contrast, the conductivity of nanorods not treated in H2 was sensitive to trace concentrations of gases in the measurement ambient even at room temperature, demonstrating their potential as gas sensors. We have also made sensitive pH sensors using single ZnO nanowires.


Author(s):  
M.W. Bench ◽  
T.J. Miller ◽  
M.I. Nathan ◽  
C.B. Carter

It has been shown in previous reports that barrier height variations can be achieved in GaAs Schottky diodes grown using molecular beam epitaxy by utilizing a thin epitaxial Si layer (a few monolayers) between the GaAs and the Al contact. The effective barrier height was found to be dependent on the thickness and growth conditions of the Si layer. However, there has remained a question as to the exact nature of the interfacial Si layer. In the present investigation, samples with different Si layer thicknesses (no Si, 6 Å Si, and 20 Å Si, as determined in situ during growth using reflection high energy electron diffraction (RHEED)) were characterized using transmission electron microscopy (TEM) to determine the nature of the Si layers. In the present study, it was also found that the presence of the interfacial Si layers affected the growth orientation and morphology of the Al layers.The layer structures investigated were grown using molecular beam epitaxy in a system described elsewhere.


2010 ◽  
Vol 1262 ◽  
Author(s):  
Tongda Ma ◽  
Hailing Tu

AbstractMicrostructural evolution is directly observed when the cross-sectional film specimen of Si/SiGe/Si on insulator (Si/SiGe/SOI) is heated from room temperature (R.T., 291 K) up to 1113 K in high voltage transmission electron microscope (HVEM). The misfit dislocation at the lower interface of the SiGe layer begins to extend downwards even at 913 K. The lower interface takes the lead in roughening against the upper interface of the SiGe layer. The roughened interface is ascribed to elastic relaxation. As misfit strain is partially transferred to SOI top Si layer and misfit dislocation is prolonged at the lower interface, the roughened interface turns smooth again. Thereafter, the misfit dislocations are introduced into the upper roughened interface of the SiGe layer to release the increased misfit strain. It is suggested that the microscopic relaxation of the SiGe layer is related to dislocation behavior and strain transfer.


Sign in / Sign up

Export Citation Format

Share Document