The Electric Field Measuring by Phase Selective Photoreflectance

1996 ◽  
Vol 421 ◽  
Author(s):  
J. S. Hwang ◽  
W. Y. Chou ◽  
S. L. Tyan ◽  
Y. C. Wang ◽  
H. Shen

AbstractThe built-in electric fields in a MBE grown δ-doped GaAs homojunction have been investigated by the techniques of photoreflectance and phase suppression. Two Franz-Keldysh oscillation features originating from two different fields in the structure superimpose with each other in the photoreflectance spectrum. By properly selecting the reference phase of the lock-in amplifier, one of the features can be suppressed, thus enabling us to determine the electric fields from two different regions. We have demonstrated that only two PR spectra, in-phase and outphase components, are needed to find the phase angle which suppresses one of the features. The electric field in the top layer is 3.5 ± 0.2 × 105 V/cm, which is in good agreement with theoretical calculation. The electric field in the buffer layer is 1.2 ± 0.1 × 104 V/cm, which suggests the existence of interface states at the buffer/substrate interface.

1995 ◽  
Vol 05 (03) ◽  
pp. 797-807 ◽  
Author(s):  
J. MOSQUERA ◽  
M. GÓMEZ-GESTEIRA ◽  
V. PÉREZ-MUÑUZURI ◽  
A.P. MUÑUZURI ◽  
V. PÉREZ-VILLAR

The electric field influence on pattern formation and traveling wave propagation is investigated in the framework of the Oregonator model. When an electric field is applied to a system that can suffer spatial instabilities, Turing and Turing-like patterns (traveling fronts that become stationary patterns when reaching a zero-flux boundary) are observed. On the other hand, when an electric field is applied to a system that cannot become unstable by spatial terms and where wavefronts are propagating in the absence of electric fields, the velocity of these wavefronts is modified and can even be reversed. This is in good agreement with previous experimental results.


2019 ◽  
Vol 9 (18) ◽  
pp. 3686 ◽  
Author(s):  
Zhaoyu Qin ◽  
Yunxiang Long ◽  
Zhenyu Shen ◽  
Cheng Chen ◽  
Liping Guo ◽  
...  

The normalized Townsend first ionization coefficient α/N and normalized attachment coefficient η/N in pure C4F7N were measured by using the steady-state Townsend (SST) method for a range of reduced electric fields E/N from 750 to 1150 Td at room temperature (20 °C). Meanwhile, the effective ionization coefficients are obtained. All SST experimental results show good agreement with pulsed Townsend (PT) experiment results. Comparisons of the critical electric fields of C4F7N with SF6 and other alternative gases such as c-C4F8 and CF3I indicate that C4F7N has a better insulation performance with a much higher normalized critical electric field at 959.19 Td.


2001 ◽  
Vol 19 (6) ◽  
pp. 633-641 ◽  
Author(s):  
G. T. Marklund ◽  
T. Karlsson ◽  
P. Eglitis ◽  
H. Opgenoorth

Abstract. Results concerning the electrodynamics of the nightside auroral bulge are presented based on simultaneous satellite and ground-based observations. The satellite data include Astrid-2 measurements of electric fields, currents and particles from a midnight auroral oval crossing and Polar UVI images of the large-scale auroral distribution. The ground-based observations include STARE and SuperDARN electric fields and magnetic records from the Greenland and MIRACLE magnetometer network, the latter including stations from northern Scandinavia north to Svalbard. At the time of the Astrid-2 crossing the ground-based data reveal intense electrojet activity, both to the east and west of the Astrid-2 trajectory, related to the Polar observations of the auroral bulge but not necessarily to a typical substorm. The energetic electron fluxes measured by Astrid-2 across the auroral oval were generally weak being consistent with a gap observed in the auroral luminosity distribution. The electric field across the oval was directed westward, intensifying close to the poleward boundary followed by a decrease in the polar cap. The combined observations suggests that Astrid-2 was moving close to the separatrix between the dusk and dawn convection cells in a region of low conductivity. The constant westward direction of the electric field across the oval indicates that current continuity was maintained, not by polarisation electric fields (as in a Cowling channel), but solely by localized up- and downward field-aligned currents in good agreement with the Astrid-2 magnetometer data. The absence of a polarisation electric field and thus of an intense westward closure current between the dawn and dusk convection cells is consistent with the relatively weak precipitation and low conductivity in the convection throat. Thus, the Cowling current model is not adequate for describing the electrodynamics of the nightside auroral bulge treated here.Key words. Ionosphere (auroral ionosphere; electric fields and currents; plasma convection)


Author(s):  
Trilok Chandra Upadhyay ◽  
Ashish Nautiyal

A modified two sub-lattice pseudospin-lattice coupled mode model of Mitsui et al [Phys. Rev., 111 (1958) 1259] by adding third, fourth order phonon anharmonic interaction and external electric field terms has been applied to ferroelectric triglycine sulphate crystal. Electric field dependence of ferroelectric, dielectric and acoustical properties has been studied. With the help of double time temperature dependent Green’s function method, expressions for shift, width, soft mode frequency, dielectric constant, loss tangent and acoustic attenuation have been derived. Numerically calculations have been made and results have been compared with experimental data reported by Bye et al [Ferroelectrics 4 (1974) 243] and Shreekumar et al [Ferroelectrics 160 (1994) 23] for TGS crystal and a good agreement has been observed.


2011 ◽  
Vol 6 (2) ◽  
pp. 122-126
Author(s):  
Rogerio Furlan ◽  
Joel A. M. Rosado ◽  
Ana Neilde Rodrigues Da Silva

Formation of oriented fibers using injection of polyethylene oxide (PEO) solutions inside electric fields defined by two parallel suspended electrodes is investigated. Images of streams formed with the injection of a large amount of polymeric solution reveal good agreement with electric field distributions obtained with numerical simulation (COMSOL Multiphysics) when appropriate boundary conditions are defined. Oriented fibers with diameters in the range of hundreds of nanometers to micrometers result connected between electrodes (separated by several centimeters) and can be easily collected/transferred keeping their orientation. Fibers with this characteristic find applications in topics such as tissue and sensors engineering. Also, the fibers are flexible and can be shaped with the stylus of a profilometer.


1992 ◽  
Vol 261 ◽  
Author(s):  
Narbeh Derhacobian ◽  
Nancy M. Haegel

ABSTRACTVariable length semi-insulating GaAs p+-υ-n+ diodes are used to investigate the influence of near contact electric field non-uniformities on the injection of minority carriers. The results show that despite the presence of highly linear IV characteristics, significant nonuniformities in the electric field dominate the device response. The current density through the device is shown to depend on the device length with a power law J ∞ (L)1.0 at a constant bias. The experimental results are compared, with good agreement, to a theoretical model which treats semi-insulating GaAs as a trap-dominated relaxation semiconductor. Electroabsorption measurements are used to observe the slow transients associated with the appearance of near contact field nonuniformities.


In his theoretical treatment of the deformation and disintegration of individual water drops of undistorted radius R 0 situated in an electric field, Taylor assumed that the drop retained a spheroidal shape until the instability point was reached and that the equations of equilibrium between the stresses due to surface tension, T , the electric field, F , and the difference between the external and internal pressures was satisfied at the poles and the equator. He calculated that the onset of instability occurs when F ( R 0 / T ) ½ = 1.625, which is in good agreement with experiment. Taylor’s assumptions have been applied to the problem of the disintegration of pairs of water drops of identical undistorted radii R 0 separated in an electric field with their line of centres parallel to the field. As F increases, the drops deform and eventually one of them disintegrates in a lower field than would be necessary for an individual drop owing to the enhancement of the local field between the drop caused by the mutual interactions of the polarization charges. On the basis of values calculated by Davis for the field enhancement between pairs of rigid spheres, values of F ( R 0 / T )½ at the disintegration point were computed. These ranged from Taylor’s value of 1.625 for large separations to 1.555, 9.889 x 10 -1 , 7.887 x 10 -2 , 3.910 x 10 -3 and 1.898 x 10 -4 for initial separations of 10, 1, 0.1, 0.01 and 0.001 radii respectively. These values of F ( R 0 / T ) ½ are slightly reduced for larger drops owing to the influence of the hydrostatic pressure difference between their vertical extremities. These calculations were tested experimentally on suspended drops and good agreement was obtained. Mass and charge were transferred from the disintegrating drop to its neighbour. Measurements taken from high speed photographs of the radius of curvature and the elongation of a drop at the moment of disintegration agreed quite closely with the predicted values. These studies indicate that the inductive mechanism of cloud electrification will separate appreciable quantities of charge even if the prevailing electric fields are weak provided that a small fraction of the interactions between polarized drops are not followed by coalescence. Numerical values for the elongation of cloud droplets as a function of their separation are presented, which should be utilized in accurate computations of cloud droplet trajectories within electrified clouds. The studies also demonstrate that the local fields between impinging cloud droplets are numerically adequate, even if the external fields are weak, to cause disintegration of one of the droplets, which is generally accompanied by the passage of a filament of water to the other drop, thus penetrating the air film separating the two drops and promoting their coalescence.


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Haichao Yu ◽  
Feng Tang ◽  
Jingjun Wu ◽  
Zao Yi ◽  
Xin Ye ◽  
...  

In intense-light systems, the traditional discrete optical components lead to high complexity and high cost. Metasurfaces, which have received increasing attention due to the ability to locally manipulate the amplitude, phase, and polarization of light, are promising for addressing this issue. In the study, a metasurface-based reflective deflector is investigated which is composed of silicon nanohole arrays that confine the strongest electric field in the air zone. Subsequently, the in-air electric field does not interact with the silicon material directly, attenuating the optothermal effect that causes laser damage. The highest reflectance of nanoholes can be above 99% while the strongest electric fields are tuned into the air zone. One presentative deflector is designed based on these nanoholes with in-air-hole field confinement and anti-damage potential. The 1st order of the meta-deflector has the highest reflectance of 55.74%, and the reflectance sum of all the orders of the meta-deflector is 92.38%. The optothermal simulations show that the meta-deflector can theoretically handle a maximum laser density of 0.24 W/µm2. The study provides an approach to improving the anti-damage property of the reflective phase-control metasurfaces for intense-light systems, which can be exploited in many applications, such as laser scalpels, laser cutting devices, etc.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie C. Lefevre ◽  
Gerwin Dijk ◽  
Attila Kaszas ◽  
Martin Baca ◽  
David Moreau ◽  
...  

AbstractGlioblastoma is a highly aggressive brain tumor, very invasive and thus difficult to eradicate with standard oncology therapies. Bioelectric treatments based on pulsed electric fields have proven to be a successful method to treat cancerous tissues. However, they rely on stiff electrodes, which cause acute and chronic injuries, especially in soft tissues like the brain. Here we demonstrate the feasibility of delivering pulsed electric fields with flexible electronics using an in ovo vascularized tumor model. We show with fluorescence widefield and multiphoton microscopy that pulsed electric fields induce vasoconstriction of blood vessels and evoke calcium signals in vascularized glioblastoma spheroids stably expressing a genetically encoded fluorescence reporter. Simulations of the electric field delivery are compared with the measured influence of electric field effects on cell membrane integrity in exposed tumor cells. Our results confirm the feasibility of flexible electronics as a means of delivering intense pulsed electric fields to tumors in an intravital 3D vascularized model of human glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document