Single Source CVD of LiAlO2

1997 ◽  
Vol 495 ◽  
Author(s):  
Wonyong Koh ◽  
Su-Jin Ku ◽  
Yunsoo Kim

ABSTRACTWe successfully deposited LiAlO2 films on Si substrates at 400–600 °C by single source chemical vapor deposition using a heterometallic compound, Li(O'Pr)2Al(CH3)2, which contains Li, Al, and O at the same 1:1:2 ratio as LiAlO2. Li(O'Pr)2Al(CH3)2 is sufficiently volatile to be vapor-transported at 50 °C. Elastic recoil detection and Rutherford backscattering spectroscopy analyses of a deposited film indicate that the film is stoichiometric (Li:Al:O = 1.0:1.0:2.0) and contains a few atomic percent hydrogen (5 %) and carbon (2 %). Depth profile analysis of X-ray photoelectron spectroscopy also confirms the 1:1 ratio of metal contents in the films. As-deposited films were amorphous, however, crystallized to β- or γ-LiA1O2 after annealing at 950 °C.

2008 ◽  
Vol 23 (11) ◽  
pp. 3048-3055 ◽  
Author(s):  
K. Polychronopoulou ◽  
J. Neidhardt ◽  
C. Rebholz ◽  
M.A. Baker ◽  
M. O’Sullivan ◽  
...  

Nanocomposite Cr–B–N coatings were deposited from CrB0.2 compound targets by reactive arc evaporation using an Ar/N2 discharge at 500 °C and −20 V substrate bias. Elastic recoil detection (ERDA), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED) were used to study the effect of the N2 partial pressure on composition and microstructure of the coatings. Cross-sectional scanning electron microscopy (SEM) showed that the coating morphology changes from a glassy to a columnar structure with increasing N2 partial pressure, which coincides with the transition from an amorphous to a crystalline growth mode. The saturation of N content in the coating confirms the formation of a thermodynamically stable CrN–BN dual-phase structure at higher N2 fractions, exhibiting a maximum in hardness of approximately 29 GPa.


1992 ◽  
Vol 283 ◽  
Author(s):  
C. Manfredotti ◽  
F. Fizzotti ◽  
G. Amato ◽  
L. Boarino ◽  
M. Abbas

ABSTRACTBoth B- and P- doped silicon films deposited by Low Pressure Chemical Vapor Deposition (LPCVD) at 300 °C (p-type) and 420 °C (n-type) have been characterized by optical absorption, Photothermal Deflection Spectroscopy (PDS), resistivity, Elastic Recoil Detection Analysis (ERDA), Transmission Electron Microscopy (TEM), Convergent-Beam Electron Diffraction (CBED) and Raman spectroscopy measurements. P-doped films, deposited at large PH3 flux rates, show a high degree of microcrystallinity, indicating that P activates the nucleation process even at low temperatures. In this case, values of activation energy of resistivity as low as 0.007 eV were obtained. Both TEM and RAMAN results confirm a volume percentage of micro crystallinity above 30%. On the contrary, B-doped samples are not microcrystalline at least in the doping range investigated, and show a behaviour not different from samples deposited by PECVD.


1989 ◽  
Vol 333 (4-5) ◽  
pp. 326-328 ◽  
Author(s):  
K. Schmidt ◽  
K. Reichelt ◽  
B. Stritzker ◽  
J. Zou

2001 ◽  
Vol 675 ◽  
Author(s):  
André Golanski ◽  
Dieter Grambole ◽  
Jean Hommet ◽  
Folker Herrmann ◽  
Philippe Kern ◽  
...  

ABSTRACTA Distributed Electron Cyclotron Resonance plasma reactor powered by a microwave generator operating at 2.45 GHz was used to deposit ta-C:H (Diamond-Like Carbon, DLC) thin films at RT. A graphite sputtering target immersed in an argon plasma was used as carbon source. The Ar plasma density was about 5×1010 cm-3. Single crystal <100> Si substrates were RF biased to a negative voltage of -80 V. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), nuclear reaction analysis (NRA) using the resonance at 6.385 MeV of the reaction: 15N + 1H-→ 12C + 4He + γ, elastic recoil detection analysis (ERDA) and Rutherford backscattering (RBS) were used to investigate the early phase of the growth. The morphology of the films grown at low pressure (0.3 mTorr) is shown to be dominated by stress-mediated nucleation leading to formation of basket-like clusters of circular hillocks 20 nm high surrounded by a planar, mostly sp2 bonded film ∼8 nm thick. With increasing plasma pressure the spatial frequency of the hillocks becomes random and the growth is dominated by the Stranski-Krastanov mode. The XPS data taken at decreasing emergence angles show that the structure of the hillocks is dominated by sp3 bonded carbon. The XPS argon signal disappears at 10° emergence angle indicating that integration of argon occurs mainly within the sp bonded regions. The NRA and ERDA analysis show that the amount of integrated hydrogen decreases with increasing substrate current density. RBS data indicate that increasing bias enhances argon integration.


1994 ◽  
Vol 337 ◽  
Author(s):  
S.M. Baumann ◽  
C.J. Hitzman ◽  
I.C. Ivanov ◽  
AY. Craig ◽  
P.M. Lindley

ABSTRACTWSix films are used extensively for contact, interconnect, and, in some cases, diffusion and Schottky barriers in semiconductor devices1. The electrical and barrier properties of these films are affected by a variety of factors, such as film stoichiometry, morphology, impurities, etc. This paper will address the capabilities and limitations of a variety of techniques which are frequently used to characterize WSix films. Techniques which were studied include: Dynamic and Static Secondary Ion Mass Spectrometry (SIMS), Rutherford Backscattering Spectrometry and Elastic Recoil Detection (RBS/ERD), Auger Electron Spectroscopy (AES), Field Emission Scanning Electron Microscopy (FE-SEM), Total Reflection X-ray Fluorescence (TXRF), Atomic Force Microscopy (AFM), and X-Ray Photoelectron Spectroscopy (XPS). Film characteristics which were studied included surface morphology; grain structure; film stoichiometry; surface and interface oxide thickness and composition; and surface, bulk, and interface impurity concentrations including metallic, atmospheric, and dopant impurities. Cross correlation between the techniques was performed whenever possible in order to compare the relative accuracy of the techniques as well.


2022 ◽  
Vol 3 (1) ◽  
pp. 27-40
Author(s):  
Alain E. Kaloyeros ◽  
Jonathan Goff ◽  
Barry Arkles

Stoichiometric silicon carbide (SiC) thin films were grown using thermal chemical vapor deposition (TCVD) from the single source precursor 1,3,5-trisilacyclohexane (TSCH) on c-Si (100) substrates within an optimized substrate temperature window ranging from 650 to 850 °C. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analyses revealed that the as-deposited films consisted of a Si-C matrix with a Si:C ratio of ~1:1. FTIR and photoluminescence (PL) spectrometry studies showed that films deposited ≥ 750 °C were defect- and H-free within the detection limit of the techniques used, while ellipsometry measurements yielded an as-grown SiC average refractive index of ~2.7, consistent with the reference value for the 3C-SiC phase. The exceptional quality of the films appears sufficient to overcome limitations associated with structural defects ranging from failure in high voltage, high temperature electronics to 2-D film growth. TSCH, a liquid at room temperature with good structural stability during transport and handling as well as high vapor pressure (~10 torr at 25 °C), provides a viable single source precursor for the growth of stoichiometric SiC without the need for post-deposition thermal treatment.


2004 ◽  
Vol 843 ◽  
Author(s):  
Zhenqing Xu ◽  
Arun Kumar ◽  
Ashok Kumar ◽  
Arun Sikder

ABSTRACTDiamond is known as the material that has excellent mechanical, electrical and chemical properties. Diamond is also an ideal interface that is compatible with microelectronics process and biological environments to work as a biosensor platform with excellent selectivity and stability. In our study, nanocrystalline diamond (NCD) films were grown on Si substrates by the microwave plasma enhanced chemical vapor deposition (MPECVD) method. Parameters such as gas composition, temperature and pressure are investigated to get the best film quality. Scanning electron microscopy (SEM) and Raman spectroscopy were used to characterize the NCD films. Then the NCD films were treated by hydrogen plasma in the CVD chamber to obtain the hydrogen terminated surface. This hydrogenated NCD film is ready for bio-modification and can work as the platform of the biosensors. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) were employed to confirm the surface hydrogenation.


Sign in / Sign up

Export Citation Format

Share Document