Multi-Technique Characterization of WSix films

1994 ◽  
Vol 337 ◽  
Author(s):  
S.M. Baumann ◽  
C.J. Hitzman ◽  
I.C. Ivanov ◽  
AY. Craig ◽  
P.M. Lindley

ABSTRACTWSix films are used extensively for contact, interconnect, and, in some cases, diffusion and Schottky barriers in semiconductor devices1. The electrical and barrier properties of these films are affected by a variety of factors, such as film stoichiometry, morphology, impurities, etc. This paper will address the capabilities and limitations of a variety of techniques which are frequently used to characterize WSix films. Techniques which were studied include: Dynamic and Static Secondary Ion Mass Spectrometry (SIMS), Rutherford Backscattering Spectrometry and Elastic Recoil Detection (RBS/ERD), Auger Electron Spectroscopy (AES), Field Emission Scanning Electron Microscopy (FE-SEM), Total Reflection X-ray Fluorescence (TXRF), Atomic Force Microscopy (AFM), and X-Ray Photoelectron Spectroscopy (XPS). Film characteristics which were studied included surface morphology; grain structure; film stoichiometry; surface and interface oxide thickness and composition; and surface, bulk, and interface impurity concentrations including metallic, atmospheric, and dopant impurities. Cross correlation between the techniques was performed whenever possible in order to compare the relative accuracy of the techniques as well.

1996 ◽  
Vol 11 (1) ◽  
pp. 229-235 ◽  
Author(s):  
E. Cattaruzza ◽  
R. Bertoncello ◽  
F. Trivillin ◽  
P. Mazzoldi ◽  
G. Battaglin ◽  
...  

Silica glass was implanted with chromium at the energy of 35 and 160 keV and at fluences varying from 1 × 1016 to 11 × 1016 ions cm−2. In a set of chromium-implanted samples significant amounts of carbon were detected. Samples were characterized by x-ray photoelectron spectroscopy, x-ray-excited Auger electron spectroscopy, secondary ion mass spectrometry, and Rutherford backscattering spectrometry. Chromium silicide and chromium oxide compounds were observed; the presence of carbon in the implanted layers induces the further formation of chromium carbide species. Thermodynamic considerations applied to the investigated systems supply indications in agreement with the experimental evidences.


2008 ◽  
Vol 23 (11) ◽  
pp. 3048-3055 ◽  
Author(s):  
K. Polychronopoulou ◽  
J. Neidhardt ◽  
C. Rebholz ◽  
M.A. Baker ◽  
M. O’Sullivan ◽  
...  

Nanocomposite Cr–B–N coatings were deposited from CrB0.2 compound targets by reactive arc evaporation using an Ar/N2 discharge at 500 °C and −20 V substrate bias. Elastic recoil detection (ERDA), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED) were used to study the effect of the N2 partial pressure on composition and microstructure of the coatings. Cross-sectional scanning electron microscopy (SEM) showed that the coating morphology changes from a glassy to a columnar structure with increasing N2 partial pressure, which coincides with the transition from an amorphous to a crystalline growth mode. The saturation of N content in the coating confirms the formation of a thermodynamically stable CrN–BN dual-phase structure at higher N2 fractions, exhibiting a maximum in hardness of approximately 29 GPa.


2005 ◽  
Vol 20 (1) ◽  
pp. 68-74 ◽  
Author(s):  
M. Gaidi ◽  
L. Stafford ◽  
A. Amassian ◽  
M. Chaker ◽  
J. Margot ◽  
...  

The influence of the microstructure of strontium-titanate-oxide (SrTiO3 or STO) thin films on their optical properties was investigated through an extensive characterization. The STO films have been deposited on silicon substrates by reactive pulsed laser deposition. The effect of the oxygen deposition pressure on the crystalline quality of the films was systematically studied by x-ray diffraction and scanning electron microscopy. Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, and secondary ion mass spectrometry were used to determine the atomic density and depth concentration profiles of the various species forming the film. The refractive index and extinction coefficient were obtained using variable angle spectroscopic ellipsometry. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their microstructural properties. In particular, the refractive index increases with film density, while losses decrease. In addition, the interface between STO and Si is characterized by an interdiffusion layer. As the deposition pressure is enhanced, the width of this layer significantly increases, inducing localized inhomogeneity of the refractive index.


2005 ◽  
Vol 865 ◽  
Author(s):  
Daniel Abou-Ras ◽  
Debashis Mukherji ◽  
Gernot Kostorz ◽  
David Brémaud ◽  
Marc Kälin ◽  
...  

AbstractThe formation of MoSe2 has been studied on polycrystalline Mo layers and on Mo single crystals in dependence of the Mo orientation, the Na concentration, and also as a function of the Se source and the substrate temperatures. The Mo substrates were selenized by evaporation of Se. The samples were analyzed by means of X-ray diffraction, Rutherford backscattering spectrometry, elastic recoil detection analysis, and by conventional and high-resolution transmission electron microscopy. It was found that the crystal structure and orientation of the MoSe2 layer change with increasing substrate temperature. However, the texture of MoSe2 does not depend on the orientation of the Mo substrate. It was also found that the MoSe2 growth is significantly influenced by the Na concentration at substrate temperatures of 450°C and 580°C.


1997 ◽  
Vol 469 ◽  
Author(s):  
J. R. Kaschny ◽  
P. F. P. Fichtner ◽  
A. Muecklich ◽  
U. Kreissig ◽  
R. A. Yankov ◽  
...  

ABSTRACTThe formation of cavity microstructures in silicon following helium implantation (10 or 40 keV; 1×1015, l×1016 and 5×1016 cm−2) and annealing (800 °C) is investigated by means of Transmission Electron Microscopy (TEM), Rutherford Backscattering Spectrometry and Channeling (RBS/C), and Elastic Recoil Detection (ERD). The processes of cavity nucleation and growth are found to depend critically on the implanted He concentration. For a maximum peak He concentration of about 5×1020 cm−3 the resulting microstructure appears to contain large overpressurized bubbles whose formation cannot be accounted by the conventional gas-release model and bubble-coarsening mechanisms predicting empty cavities. The trapping of Fe and Cu at such cavity regions is studied by Secondary Ion Mass Spectrometry (SIMS).


1992 ◽  
Vol 282 ◽  
Author(s):  
David C. Smith ◽  
Rodrigo R. Rubiano ◽  
Matthew D. Healy ◽  
Robert W. Springer

ABSTRACTStable zirconium carbide thin films have been deposited from a singlesource organometallic precursor, tetraneopentyl zirconium, at substrate temperatures above 500 °C. Materials deposited above this temperature are crystalline by X-ray diffraction. A metal to carbon ratioof 1:2 is observed by Auger electron spectroscopy depth profiling. X-ray photoelectron spectroscopy indicates the zirconium is single phase. The observed spectra correspond well to spectra for zirconium carbide standards. Carbon XPS reveals carbidic and graphitic or hydrocarbon species with a third unknown carbon species. Elastic recoil detection finds a large, up to 16%, hydrogen content in the thin film.


1999 ◽  
Vol 567 ◽  
Author(s):  
Renee Nieh ◽  
Wen-Jie Qi ◽  
Yongjoo Jeon ◽  
Byoung Hun Lee ◽  
Aaron Lucas ◽  
...  

ABSTRACTBa0.5Sr0.5TiO3 (BST) is one of the high-k candidates for replacing SiO2 as the gate dielectric in future generation devices. The biggest obstacle to scaling the equivalent oxide thickness (EOT) of BST is an interfacial layer, SixOy, which forms between BST and Si. Nitrogen (N2) implantation into the Si substrate has been proposed to reduce the growth of this interfacial layer. In this study, capacitors (Pt/BST/Si) were fabricated by depositing thin BST films (50Å) onto N2 implanted Si in order to evaluate the effects of implant dose and annealing conditions on EOT. It was found that N2 implantation reduced the EOT of RF magnetron sputtered and Metal Oxide Chemical Vapor Deposition (MOCVD) BST films by ∼20% and ∼33%, respectively. For sputtered BST, an implant dose of 1×1014cm−;2 provided sufficient nitrogen concentration without residual implant damage after annealing. X-ray photoelectron spectroscopy data confirmed that the reduction in EOT is due to a reduction in the interfacial layer growth. X-ray diffraction spectra revealed typical polycrystalline structure with (111) and (200) preferential orientations for both films. Leakage for these 50Å BST films is on the order of 10−8 to 10−5 A/cm2—lower than oxynitrides with comparable EOTs.


Sign in / Sign up

Export Citation Format

Share Document