Modeling of Glass Dissolution and Transport With the Code SUGAR

1997 ◽  
Vol 506 ◽  
Author(s):  
J.S. Small ◽  
D.P. Trivedi ◽  
P.K. Abraitisti

ABSTRACTSUGAR (Simplified Understading of Glass And environment Reactions) is a one dimensional (lD) reactive transport code which sequentially couples dissolved chemical species transport and sorption with, chemical speciation, mineral precipitation and kinetic controlled glass dissolution. SUGAR also has the capability to model radioactive decay and steel corrosion. This paper describes the computer model and presents results of model testing against experimental data. The capabilities of the model are demonstrated by a preliminary investigation of the geochemical evolution of glass in crystalline rock formations.

2006 ◽  
Vol 94 (9-11) ◽  
Author(s):  
Laurent de Windt ◽  
H. Schneider ◽  
C. Ferry ◽  
H. Catalette ◽  
V. Lagneau ◽  
...  

A physico-chemical model developed for spent fuel alteration was integrated in a global reactive transport model of a spent fuel disposal system, considering both decaying and stable isotopes, corroded steel canisters, bentonite backfills and a clayey host-rock. Fuel evolution took into account radiolytic-enhanced corrosion and long-term solubility-controlled dissolution as well as instantaneous release fractions. The calculations show that spent-fuel dissolution has no significant alteration effect on the near-field components except an oxidizing plume in the vicinity of the waste packages. The dissolved uranyl species, partly precipitate as schoepite on the fuel pellets, and partly diffuse in the near-field where magnetite and pyrite reduce U(VI) to yield uraninite precipitation. Under disposal conditions, preliminary calculations indicate that steel corrosion may generate sufficient dissolved hydrogen as to react with radiolytic oxidants and inhibit fuel dissolution. The formation of a protective schoepite layer could also reduce the alteration of fuel pellets. Radionuclides migration (Am, Cs, I) in the near-field is discussed in a second stage discriminating between sorption, precipitation and radioactive decay processes. The migration of Cs is translated in terms of cumulative activity profiles useful for integrated performance assessment.


2005 ◽  
Vol 39 (15) ◽  
pp. 5851-5855
Author(s):  
Miho Uchida ◽  
Takahiro Sogabe ◽  
Tadaaki Ikoma ◽  
Akitsugu Okuwaki

2015 ◽  
Vol 18 (2) ◽  
pp. 310-328 ◽  
Author(s):  
P. Gamazo ◽  
L. J. Slooten ◽  
J. Carrera ◽  
M. W. Saaltink ◽  
S. Bea ◽  
...  

Reactive transport modeling involves solving several nonlinear coupled phenomena, among them, the flow of fluid phases, the transport of chemical species and energy, and chemical reactions. There are different ways to consider this coupling that might be more or less suitable depending on the nature of the problem to be solved. In this paper we acknowledge the importance of flexibility on reactive transport codes and how object-oriented programming can facilitate this feature. We present PROOST, an object-oriented code that allows solving reactive transport problems considering different coupling approaches. The code main classes and their interactions are presented. PROOST performance is illustrated by the resolution of a multiphase reactive transport problem where geochemistry affects hydrodynamic processes.


2021 ◽  
Vol 3 ◽  
Author(s):  
Chidera O. Iloejesi ◽  
Lauren E. Beckingham

Subsurface porous aquifers are being considered for use as reservoirs for compressed energy storage of renewable energy. In these systems, a gas is injected during times in which production exceeds demand and extracted for energy generation during periods of peak demand or scarcity in production. Current operational subsurface energy facilities use salt caverns for storage and air as the working gas. CO2 is potentially a more favorable choice of working gas where under storage conditions CO2 has high compressibility which can improve operational efficiency. However, the interaction of CO2 and brine at the boundary of the storage zone can produce a chemically active fluid which can result in mineral dissolution and precipitation reactions and alter the properties of the storage zone. This study seeks to understand the geochemical implications of utilization of CO2 as a working gas during injection, storage and extraction flow cycles. Here, reactive transport simulations are developed based on 7 h of injection, 11 h of withdrawal and 6 h of reservoir closure, corresponding to the schedule of the Pittsfield field test, for 15 years of operational life span to assess the geochemical evolution of the reservoir. The evolution in the storage system is compared to a continuously cyclic system of 12 h injection and extraction. The result of the study on operational schedule show that mineral reactivity occurs at the inlet of the domain. Furthermore, the porosity of the inner domain is preserved during the cycling of CO2 acidified brine for both systems.


1. Introduction .—Gamow's elegant deduction by general arguments of the law of radioactive decay by α-particle emission and his subsequent investigations on artificial disintegration suggested to us the desirability of investigating as closely as possible any simple model of a decaying nucleus as a verification of his general approximations. For the model chosen the exact investigation of the decay process is almost trivial. Since we obtained this, now some time ago, Dr. Gamow informed us that he had also obtained equivalent detailed results. Still more recently such results have been published by Kudar. We shall not therefore dwell upon them here. The application of the same ideals, however, to the reverse process of penetration presents points of very definite interest, which we think are well worth discussion. The main point that arises is that the chance of penetration α-particle is or is not equal to a characteristic energy of the nucleus itself. This is a point which is not dealt with by Gamow in his paper. We have discussed it with him, and now put forward the results we have obtained. Since the solution of the decay problem is required in the main discussion of the penetration of α-particles into the nucleus it is included here in 2 for reference. We must emphasise that we claim no novelty, except of detail, for the work of 2; the general lines by now are a matter of fairly common knowledge.


Author(s):  
K. B. Nakshatrala ◽  
A. J. Valocchi

Mixing of chemical species across plume boundaries has a major influence upon the fate of the reactive pollutant in the subsurface. Small-scale heterogeneity leads to irregular plume boundaries which enhances mixing-controlled reactions through increasing the interfacial area of the plume. Therefore, it is crucial to capture this small-scale heterogeneity in order to properly model reactive transport. Unfortunately, computational limitations do not permit full resolution of the smallest scales of heterogeneity as the size of geomodels used for reservoir description typically exceeds by several orders of magnitude the capabilities of conventional reservoir simulators. Thus, it is necessary to use a coarse numerical grid, particularly for the cases with a large number of reactive species.


2010 ◽  
Vol 98 (6) ◽  
Author(s):  
R. Juncosa ◽  
I. Font ◽  
J. Delgado

AbstractRadioactive decay is an important subject to take into account when studying the thermo-hydro-dynamic behavior of the buffer clay material used in the containment of radioactive waste. The modern concepts for the multibarrier design of a repository of high level waste in deep geologic formations consider that once canisters have failed, the buffer clay material must ensure the retention and/or delay of radionuclides within the time framework given in the assessment studies. Within the clay buffer, different chemical species are retarded/fixed according to several physicochemical processes (ion exchange, surface complexation, precipitation, matrix diffusion, ...) but typical approaches do not consider the eventuality that radioactive species change their chemical nature (The radioactive decay of an element takes place independently of the phase (aqueous, solid or gaseous) to which it belongs. This means that, in terms of radionuclide fixation, some geochemical processes will be effective scavengers (for instance mineral precipitation of crystal growth) while others will not (for instance ion exchange and/or sorption).In this contribution we present a reactive radioactive decay model of any number of chemical components including those that belong to decay series. The model, which is named FLOW-DECAY, also takes into account flow and isotopic migration and it has been applied considering a hypothetical model scenario provided by the project ENRESA 2000 and direct comparison with the results generated by the probabilistic code GoldSim. Results indicate that FLOW-DECAY may simulate the decay processes in a similar way that GoldSim, being the differences related to factors associated to code architecture.


Sign in / Sign up

Export Citation Format

Share Document