Investigation of silicon carbide physical vapor transport growth on the C-terminated face of 6H seeds

2000 ◽  
Vol 640 ◽  
Author(s):  
D. Schulz ◽  
J. Doerschel ◽  
K. Irmscher ◽  
H.-J. Rost ◽  
D. Siche ◽  
...  

ABSTRACTSublimation growth of 6H-SiC has been studied with respect to surface morphology, growth temperature, supersaturation and growth rate. Growth was performed on the C-terminated face of 6H seeds mainly and for comparison also the Si-terminated face was used. Step bunching is observed dependent on different parameters and is strongly influenced by the seed orientation. The growth rate of 4H on the C-face is found to be higher than the rate of 6H grown on the Siface.

2010 ◽  
Vol 645-648 ◽  
pp. 63-66 ◽  
Author(s):  
Guoli L. Sun ◽  
Irina G. Galben-Sandulache ◽  
Thierry Ouisse ◽  
Jean Marc Dedulle ◽  
Michel Pons ◽  
...  

The Continuous Feed-Physical Vapor Transport Technique (CF-PVT) was optimized by considering the heating, thermal insulation and the geometry of growth cavity. The effects of seeds on the surface morphology of the grown layer have been discussed. We successfully grew 3C-SiC bulk with a diameter of 7.0 mm and 3.3 mm in height with a high growth rate of 0.8 mm/h by the CF-PVT technique.


2013 ◽  
Vol 740-742 ◽  
pp. 229-234 ◽  
Author(s):  
Massimo Camarda ◽  
Andrea Canino ◽  
Patrick Fiorenza ◽  
Andrea Severino ◽  
Ruggero Anzalone ◽  
...  

we study the surface morphology of homoepitaxially grown 4H silicon carbide in terms of growth rate, miscut direction of the substrate and post growth argon thermal annealings. All the results indicate that the final surface morphology is the result of a competition between energetic reorganization and kinetic randomness. Because in all observed conditions energetic reorganization favors surface ondulations (“step bunching”), out-of-equilibrium conditions are one of the keys to favor the reduction of the surface roughness to values below ~0.5 nm. We theoretically support these results using kinetics superlattice Monte Carlo simulations (KslMC)


2001 ◽  
Vol 123 (6) ◽  
pp. 1098-1109 ◽  
Author(s):  
Q.-S. Chen ◽  
H. Zhang ◽  
V. Prasad ◽  
C. M. Balkas ◽  
N. K. Yushin

Wide-bandgap silicon carbide (SiC) substrates are needed for fabrication of electronic and optoelectronic devices and circuits that can function under high-temperature, high-power, high-frequency conditions. The bulk growth of SiC single crystal by physical vapor transport (PVT), modified Lely method involves sublimation of a SiC powder charge, mass transfer through an inert gas environment, and condensation on a seed. Temperature distribution in the growth system and growth rate profile on the crystal surface are critical to the quality and size of the grown SiC single crystal. Modeling of SiC growth is considered important for the design of efficient systems and reduction of defect density and micropipes in as-grown crystals. A comprehensive process model for SiC bulk growth has been developed that incorporates the calculations of radio frequency (RF) heating, heat and mass transfer and growth kinetics. The effects of current in the induction coil as well as that of coil position on thermal field and growth rate have been studied in detail. The growth rate has an Arrhenius-type dependence on deposition surface temperature and a linear dependence on the temperature gradient in the growth chamber.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950032 ◽  
Author(s):  
Yuchen Deng ◽  
Yaming Zhang ◽  
Nanlong Zhang ◽  
Qiang Zhi ◽  
Bo Wang ◽  
...  

Pure dense silicon carbide (SiC) ceramics were obtained via the high-temperature physical vapor transport (HTPVT) method using graphite paper as the growth substrate. The phase composition, the evolution of microstructure, the thermal diffusivity and thermal conductivity at RT to 200∘C were investigated. The obtained samples had a relative density of higher than 98.7% and a large grain size of 1[Formula: see text]mm, the samples also had a room-temperature thermal conductivity of [Formula: see text] and with the temperature increased to 200∘C, the thermal conductivity still maintained at [Formula: see text].


2004 ◽  
Vol 457-460 ◽  
pp. 55-58 ◽  
Author(s):  
Peter J. Wellmann ◽  
Z.G. Herro ◽  
Sakwe Aloysius Sakwe ◽  
Pierre M. Masri ◽  
M.V. Bogdanov ◽  
...  

2010 ◽  
Vol 645-648 ◽  
pp. 99-102 ◽  
Author(s):  
Kazutoshi Kojima ◽  
Sachiko Ito ◽  
Junji Senzaki ◽  
Hajime Okumura

We have carried out detailed investigations of 4H-SiC homoepitaxial growth on vicinal off-angled Si-face substrates. We found that the surface morphology of the substrate just after in-situ H2 etching was also affected by the value of the vicinal-off angle. Growth conditions consisting of a low C/Si ratio and a low growth temperature were effective in suppressing macro step bunching at the grown epilayer surface. We also demonstrated epitaxial growth without step bunching on a 2-inch 4H-SiC Si-face substrate with a vicinal off angle of 0.79o. Ni Schottky barrier diodes fabricated on an as-grown epilayer had a blocking voltage above 1000V and a leakage current of less than 5x10-7A/cm2. We also investigated the propagation of basal plane dislocation from the vicinal off angled substrate into the epitaxial layer.


2010 ◽  
Vol 645-648 ◽  
pp. 375-378 ◽  
Author(s):  
Valdas Jokubavicius ◽  
Justinas Palisaitis ◽  
Remigijus Vasiliauskas ◽  
Rositza Yakimova ◽  
Mikael Syväjärvi

Different sublimation growth conditions of 3C-SiC approaching a bulk process have been investigated with the focus on appearance of macrodefects. The growth rate of 3C-SiC crystals grown on 6H-SiC varied from 380 to 460 μm/h with the thickness of the crystals from 190 to 230 μm, respectively. The formation of macrodefects with void character was revealed at the early stage of 3C-SiC crystal growth. The highest concentration of macrodefects appears in the vicinity of the domain in samples grown under high temperature gradient and fastest temperature ramp up. The formation of macrodefects was related to carbon deficiency which appear due to high Si/C ratio which is used to enable formation of the 3C-SiC polytype.


2015 ◽  
Vol 821-823 ◽  
pp. 468-471 ◽  
Author(s):  
Yuki Mori ◽  
Mieko Matsumura ◽  
Hirotaka Hamamura ◽  
Toshiyuki Mine ◽  
Akio Shima ◽  
...  

The mechanism of dielectric breakdown of oxide on step-bunching of 4H-silicon carbide (SiC) was investigated. Comparing the surface morphology obtained before forming metal-oxide-semiconductor (MOS) capacitor and optical emission on the capacitor under electrical stress, it was cleared that current concentrates on step-bunching and it often caused preferential dielectric breakdown. Based on TEM analysis and the observation of time dependence of emission under the stress, a new model was proposed to explain the dielectric breakdown on step-bunching.


2018 ◽  
Vol 924 ◽  
pp. 15-18
Author(s):  
Masashi Sonoda ◽  
Kentaro Shioura ◽  
Takahiro Nakano ◽  
Noboru Ohtani ◽  
Masakazu Katsuno ◽  
...  

The defect structure at the growth front of 4H-SiC boules grown using the physical vapor transport (PVT) method has been investigated using high resolution x-ray diffraction and x-ray topography. The crystal parameters such as the c-lattice constant exhibited characteristic variations across the growth front, which appeared to be caused by variation in surface morphology of the as-grown surface of the boules rather than the defect structure underneath the surface. X-ray topography also revealed that basal plane dislocations are hardly nucleated at the growth front during PVT growth of 4H-SiC crystals.


Sign in / Sign up

Export Citation Format

Share Document