Composites of Carbon Filaments Made from Methane

2001 ◽  
Vol 702 ◽  
Author(s):  
Xiaoping Shui ◽  
Xuli Fu ◽  
Martin Segiet ◽  
D.D.L. Chung

ABSTRACTPolymer-matrix and cement-matrix structural composites containing discontinuous carbon filaments (diameter = 0.1 μm) that were made catalytically from methane were developed for structural and electromagnetic functions. The composites were particularly attractive for electromagnetic interference shielding and radio wave reflection, due to the skin effect and the small diameter of the filaments. Coating the filaments with nickel by electroplating further enhanced the electromagnetic performance. However, the composites were not attractive for structural functions other than vibration damping, due to the large amount of interface between the filaments and the matrix. An effective configuration for the damping function involved using the filaments as an additive between the laminae of continuous conventional carbon fibers in a polymer-matrix structural composite.

2010 ◽  
Vol 442 ◽  
pp. 349-355 ◽  
Author(s):  
Shahrul A. Abdullah ◽  
Lars Frormann ◽  
Anjum Saleem

Single filler polyurethane composites with carbon fibers (CFs) and multi-walled carbon nanotubes (MWNTs) were prepared by melt mixing methods and its thermal as well as electrical resistivity characteristics were investigated. The influences of fillers and mixing methods on thermal and electrical conductivity of CF/- and MWNT/polyurethane composites were investigated and the result shows that the addition of carbon fillers improved the thermal conductivity of the polyurethane composites. Higher filler concentration results in better thermal conductivity because better formation of thermally conductive networks along polymer matrix to ensure the thermal was conducted through the matrix and the network along the polymer composites. The presence of carbon additives improves the electrical resistivity of the materials as well. The present study revealed the potential of carbon as agent for better thermal and electrical conductivities and their properties depend strongly on the dispersion and distribution of the fillers in the polymer matrix.


2001 ◽  
Vol 691 ◽  
Author(s):  
Shoukai Wang ◽  
Sihai Wen ◽  
Victor H. Guerrero ◽  
D.D.L. Chung

ABSTRACTThe tailoring of the sign and magnitude of the absolute thermoelectric power was achieved in structural composites by the choice of the reinforcing fibers and of the particulate filler between laminae. The resulting thermoelectric structural composites included continuous carbon fiber polymer-matrix composites and short fiber cement-matrix composites. In addition, it resulted in thermocouples in the form of structural composites. The fibers and interlaminar filler impacted the thermoelectric behavior in the longitudinal and through-thickness directions respectively.


Cellulose ◽  
2021 ◽  
Author(s):  
Koki Matsumoto ◽  
Tatsuya Tanaka ◽  
Masahiro Sasada ◽  
Noriyuki Sano ◽  
Kenta Masuyama

AbstractThis study focused on realizing fire retardancy for polymer composites by using a cellulosic biofiller and ammonium polyphosphate (APP). The motivation of this study was based on revealing the mechanism of the synergetic effect of a cellulosic biofiller and APP and determining the parameters required for achieving a V-0 rating in UL94 standard regardless of the kind of polymer system used. As for the polymer matrix, polypropylene and polylactic acid were used. The flammability, burning behavior and thermal decomposition behavior of the composites were investigated through a burning test according to the UL-94 standard, cone calorimetric test and thermogravimetric analysis. As a result, the incorporation of a high amount of cellulose enabled a V-0 rating to be achieved with only a small amount of APP despite the variation of the optimum cellulose loading between the matrix polymers. Through analysis, the results indicated that APP decreased the dehydration temperature of cellulose. Furthermore, APP promoted the generation of enough water as a nonflammable gas and formed enough char until the degradation of the polymer matrix was complete. The conditions required to achieve the V-0 rating were suggested against composites incorporating APP and biofillers. Furthermore, the suggested conditions were validated by using polyoxymethylene as a highly flammable polymer.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1319 ◽  
Author(s):  
Ran Li ◽  
Huiping Lin ◽  
Piao Lan ◽  
Jie Gao ◽  
Yan Huang ◽  
...  

Lightweight electromagnetic interference shielding cellulose foam/carbon fiber composites were prepared by blending cellulose foam solution with carbon fibers and then freeze drying. Two kinds of carbon fiber (diameter of 7 μm) with different lengths were used, short carbon fibers (SCF, L/D = 100) and long carbon fibers (LCF, L/D = 300). It was observed that SCFs and LCFs built efficient network structures during the foaming process. Furthermore, the foaming process significantly increased the specific electromagnetic interference shielding effectiveness from 10 to 60 dB. In addition, cellulose/carbon fiber composite foams possessed good mechanical properties and low thermal conductivity of 0.021–0.046 W/(m·K).


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1719
Author(s):  
Patryk Fryń ◽  
Sebastian Lalik ◽  
Natalia Górska ◽  
Agnieszka Iwan ◽  
Monika Marzec

The main goal of this paper was to study the dielectric properties of hybrid binary and ternary composites based on biodegradable polymer Ecoflex®, single walled carbon nanotubes (SWCN), and liquid crystalline 4′-pentyl-4-biphenylcarbonitrile (5CB) compound. The obtained results were compared with other created analogically to Ecoflex®, hybrid layers based on biodegradable polymers such as L,D-polylactide (L,D-PLA) and polycaprolactone (PCL). Frequency domain dielectric spectroscopy (FDDS) results were analyzed taking into consideration the amount of SWCN, frequency, and temperature. For pure Ecoflex®, two relaxation processes (α and β) were identified. It was shown that the SWCN admixture (in the weight ratio 10:0.01) did not change the properties of the Ecoflex® layer, while in the case of PCL and L,D-PLA, the layers became conductive. The dielectric constant increased with an increase in the content of SWCN in the Ecoflex® matrix and the conductive behavior was not visible, even for the greatest concentration (10:0.06 weight ratio). In the case of the Ecoflex® polymer matrix, the conduction relaxation process at a frequency ca. several kilohertz appeared and became stronger with an increase in the SWCN admixture in the matrix. Addition of oleic acid to the polymer matrix had a smaller effect on the increase in the dielectric response than the addition of liquid crystal 5CB. Fourier transform infrared (FTIR) results revealed that the molecular structure and chemical character of the Ecoflex® and PCL matrixes remained unchanged upon the addition of SWCN or 5CB in a weight ratio of 10:0.01 and 10:1, respectively, while molecular interactions appeared between L,D-PLA and 5CB. Moreover, adding oleic acid to pure Ecoflex® as well as the binary and ternary hybrid layers with SWCN and/or 5CB in a weight ratio of Ecoflex®:oleic acid equal to 10:0.3 did not have an influence on the chemical bonding of these materials.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1512
Author(s):  
Chiara Morano ◽  
Ran Tao ◽  
Marco Alfano ◽  
Gilles Lubineau

Adhesive bonding of carbon-fiber-reinforced polymers (CFRPs) is a key enabling technology for the assembly of lightweight structures. Surface pretreatment is necessary to remove contaminants related to material manufacturing and ensure bond reliability. The present experimental study focuses on the effect of mechanical abrasion on the damage mechanisms and fracture toughness of CFRP/epoxy joints. The analyzed CFRP plates were provided with a thin layer of surface epoxy matrix and featured enhanced sensitivity to surface preparation. Various degrees of morphological modification and fairly controllable carbon fiber exposure were obtained using sanding with emery paper and grit-blasting with glass particles. In the sanding process, different grit sizes of SiC paper were used, while the grit blasting treatment was carried by varying the sample-to-gun distance and the number of passes. Detailed surveys of surface topography and wettability were carried out using various methods, including scanning electron microscopy (SEM), contact profilometry, and wettability measurements. Mechanical tests were performed using double cantilever beam (DCB) adhesive joints. Two surface conditions were selected for the experiments: sanded interfaces mostly made of a polymer matrix and grit-blasted interfaces featuring a significant degree of exposed carbon fibers. Despite the different topographies, the selected surfaces displayed similar wettability. Besides, the adhesive joints with sanded interfaces had a smooth fracture response (steady-state crack growth). In contrast, the exposed fibers at grit-blasted interfaces enabled large-scale bridging and a significant R-curve behavior. While it is often predicated that quality composite joints require surfaces with a high percentage of the polymer matrix, our mechanical tests show that the exposure of carbon fibers can facilitate a remarkable toughening effect. These results open up for additional interesting prospects for future works concerning toughening of composite joints in automotive and aerospace applications.


2014 ◽  
Vol 617 ◽  
pp. 104-109 ◽  
Author(s):  
Milan Žmindák ◽  
Zoran Pelagić ◽  
Maroš Bvoc

In the recent years a big focus is subjected to the response of structures subjected to out-of-plane loading such as blasts, impact, etc. not only to homogenous materials, but also to heterogeneous materials, such as composites. Such form of loading can cause considerable damage to the structure. In the case of layered composite materials the damage can have several forms, starting from damage in layers up to delamination and full damage of the construction. This paper describes the investigation of shockwave propagation in composite structures caused by impact loading. The composite consists of carbon fibers in a polymer matrix, in which the fibers are much stiffer then the matrix. Finite element simulations were carried out for a “bird” strike impact on a composite wing leading edge. Results show a good impact resistance and good damping abilities of shockwaves.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fakhim Babak ◽  
Hassani Abolfazl ◽  
Rashidi Alimorad ◽  
Ghodousi Parviz

We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.


1987 ◽  
Vol 114 ◽  
Author(s):  
Sean Wise ◽  
Kevan Jones ◽  
Claudio Herzfeld ◽  
David D. Double

ABSTRACTVery high strength castable chemically bonded ceramic (CBC) materials have been prepared which consist of finely chopped steel fibers and steel aggregate in a silica modified portland cement matrix. This paper examines the effect of metal fiber addition on compressive and flexural strengths. The overall chemistry of the matrix is held constant but the morphological form of silica used and the cure conditions are altered to examine their effect. Compressive strengths in excess of 500 MPa and flexural strengths in excess of 80 MPa can be obtained.It is found that flexural strength increases proportionally with fiber content over the range of 0 to 10% by volume. Compressive strengths are not affected. Use of silica fume in the mixes produces higher strengths at low temperatures than mixes which contain only crystalline silica. High temperature curing/drying (400°C), which produces the highest strengths, produces equivalent properties for formulations with and without silica fume. Higher water/cement ratios are found to reduce compressive strengths but have relatively little effect on the flexural properties.


Sign in / Sign up

Export Citation Format

Share Document