New Ge-Sn materials with adjustable bandgaps and lattice constants

2002 ◽  
Vol 744 ◽  
Author(s):  
Matthew R. Bauer ◽  
John Tolle ◽  
A. V. G. Chizmeshya ◽  
S. Zollner ◽  
J. Menendez ◽  
...  

ABSTRACTThe synthesis and optical properties of a new class of Si-based infrared semiconductors in the Ge1-x Snx system are described. Chemical methods based on deuterium-stabilized Sn hydrides and UHV-CVD were used to prepare a wide range of metastable compositions and structures directly on silicon. These materials exhibit high thermal stability, superior crystallinity, and unique crystallographic and optical properties, such as adjustable band gaps and lattice constants. These properties are characterized by Rutherford backscattering, low-energy secondary ion mass spectrometry, high-resolution transmission electron microscopy, x-ray diffraction as well as infrared and Raman spectroscopies and spectroscopic ellipsometry. The films grow essentially strain free and display a strong compositional dependence of the band structure.

2001 ◽  
Vol 692 ◽  
Author(s):  
K. S. Huh ◽  
D. K. Hwang ◽  
K. H. Bang ◽  
M. K. Hong ◽  
D. H. Lee ◽  
...  

AbstractA series of ZnO thin films with various deposition temperatures were prepared on (100) GaAs substrates by radio-frequency magnetron sputtering using ZnO target. The ZnO films were studied by field emission scanning electron microscope(FESEM), x-ray diffraction(XRD), photoluminescence(PL), cathodoluminescence(CL), and Hall measurements. The structural, optical, and electrical properties of the films were discussed as a function of the deposition temperature. With increasing temperature, the compressive stress in the films was released and their crystalline and optical properties were improved. From the depth profile of As measured by secondary ion mass spectrometry(SIMS), As doping was confirmed, and, in order to activate As dopant atoms, post-annealing treatment was performed. After annealing treatment, electrical and optical properties of the films were changed.


1995 ◽  
Vol 399 ◽  
Author(s):  
P. Fons ◽  
S. Niki ◽  
A. Yamada ◽  
A. Okada ◽  
D.J. Tweet

ABSTRACTA series of CuInSe2 thin films of varying thicknesses were grown on both GaAs(001) substrates and nominally lattice-matched In0.29Ga0.71As (001) linearly graded buffers by MBE at 450°C. Transmission electron microscopy and high resolution x-ray diffraction measurements revealed the presence of a second phase with chalcopyrite symmetry strained to the CuInSe2 thin film in-plane lattice constant for CuInSe2 films grown on GaAs substrates. Further examination confirmed that the second phase possessed chalcopyrite symmetry. No second phase was observed in films grown on nearly lattice-matched In0.29Ga0.71As (001) linearly graded buffers. Secondary ion mass spectrometry confirmed the presence of interdiffusion from of Ga from the substrate into the CuInSe2layer. It is speculated that this diffusion is related to the state of stress due to heteroepitaxial misfit.


Author(s):  
Wen-Hsin Chang ◽  
Hsien-Wen Wan ◽  
Yi-Ting Cheng ◽  
Yen-Hsun Glen Lin ◽  
Toshifumi IRISAWA ◽  
...  

Abstract Germanium-on-Insulator (GeOI) structures with the surface orientation of (111) have been successfully fabricated by using low thermal budget epitaxial-lift-off (ELO) technology via direct bonding and selective etching. The material characteristics and transport properties of the Ge(111)OI structure have been systematically investigated through secondary-ion mass spectrometry, Raman spectroscopy, X-ray diffraction, high-resolution transmission electron microscope, and Hall measurement. The transferred Ge (111) layer remained almost intact from the as-grown epitaxial layers, indicating the benefits of ELO technology. The low thermal budget ELO technology demonstrated in this work is promising to integrate Ge channels with different surface orientations on Si (100) substrates for future monolithic 3D applications.


1995 ◽  
Vol 398 ◽  
Author(s):  
Kenneth M. Kramer ◽  
Michael O. Thompson

ABSTRACTIon implantation of carbon into single-crystal silicon followed by excimer laser irradiation was used to create supersaturated, epitaxial SixC1-x. films. Crystallization proceeded from the underlying single-crystal silicon through the carbon containing layers at velocities of approximately 5 m/s. Characterization by high-resolution x-ray diffraction and Fourier-transform infrared absorption indicate that the carbon is found predominantly on substi-tutional lattice sites for concentrations up to 1.4 at.% C. Secondary-ion mass spectrometry profiles and numerical mass transfer calculations were used to estimate the diffusion coefficient of carbon in the liquid as 2-3 × 10−4cm2/s with a segregation coefficient greater than 0.4. Unusual diffusion behavior was observed for the carbon at 1.4 at.% C. At higher concentrations, evidence of SiC precipitates was observed in transmission electron microscope images and FTIR absorption spectra.


1995 ◽  
Vol 403 ◽  
Author(s):  
E. Kamiinska ◽  
A. Piotrowska ◽  
A. Barcz ◽  
S. Kasjaniuk ◽  
E. Mizera ◽  
...  

AbstractThe interactions between thin films of Zn and (100)InP were analysed with secondary ion mass spectrometry, X-ray diffraction and transmission electron microscopy. Zn was found to penetrate the native oxide on InP surface during deposition, and to form an ohmic contact when deposited on n-type InP. Under heat treatment Zn protrudes into InP, and beneath Zn/InP interface a tetragonal Zn3P2 phase lattice matched to InP grows.


1990 ◽  
Vol 5 (3) ◽  
pp. 578-586 ◽  
Author(s):  
A. F. de Jong ◽  
K. T. F. Janssen

In this paper two methods for measuring aluminum compositions in very thin (1.5–15 nm), individual AlxGa1–xAs layers are investigated. The transmission electron microscopy (TEM) thickness-fringe method uses the bright-field extinction fringes from a small, cleaved 90° wedge imaged in a [100] orientation. By comparing calculated and experimental extinction fringes, compositions are determined with a sensitivity in x of 0.03, in layers with a thickness of 3.5 nm. With secondary ion mass spectrometry (SIMS), compositions in AlxGa1–xAs layers with a thickness of 15 nm are measured with an accuracy in x between 0.02 and 0.05. Thicker layers (1 μm) with a composition known from x-ray diffraction measurements are used as a reference for both methods. Subsequently, TEM results are compared with SIMS and the reference measurements. The overall agreement is good, but for 0.25 < x < 0.65, the values of x found by TEM are systematically 0.05 too low. Using the SIMS and reference measurements as a calibration, compositions can be determined by TEM with an accuracy between 0.03 (low x) and 0.05 (high x) in layers as thin as 1.5 nm.


1992 ◽  
Vol 262 ◽  
Author(s):  
J.W. Honeycutt ◽  
J. Ravi ◽  
G. A. Rozgonyi

ABSTRACTThe effects of Ti and Co silicidation on P+ ion implantation damage in Si have been investigated. After silicidation of unannealed 40 keV, 2×1015 cm-2 P+ implanted junctions by rapid thermal annealing at 900°C for 10–300 seconds, secondary ion mass spectrometry depth profiles of phosphorus in suicided and non-silicided junctions were compared. While non-silicided and TiSi2 suicided junctions exhibited equal amounts of transient enhanced diffusion behavior, the junction depths under COSi2 were significantly shallower. End-of-range interstitial dislocation loops in the same suicided and non-silicided junctions were studied by planview transmission electron microscopy. The loops were found to be stable after 900°C, 5 minute annealing in non-silicided material, and their formation was only slightly effected by TiSi2 or COSi2 silicidation. However, enhanced dissolution of the loops was observed under both TiSi2 and COSi2, with essentially complete removal of the defects under COSi2 after 5 minutes at 900°C. The observed diffusion and defect behavior strongly suggest that implantation damage induced excess interstitial concentrations are significantly reduced by the formation and presence of COSi2, and to a lesser extent by TiSi2. The observed time-dependent defect removal under the suicide films suggests that vacancy injection and/or interstitial absorption by the suicide film continues long after the suicide chemical reaction is complete.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 698
Author(s):  
Wenwang Wei ◽  
Yi Peng ◽  
Jiabin Wang ◽  
Muhammad Farooq Saleem ◽  
Wen Wang ◽  
...  

AlN epilayers were grown on a 2-inch [0001] conventional flat sapphire substrate (CSS) and a nano-patterned sapphire substrate (NPSS) by metalorganic chemical vapor deposition. In this work, the effect of the substrate template and temperature on stress and optical properties of AlN films has been studied by using Raman spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible spectrophotometer and spectroscopic ellipsometry (SE). The AlN on NPSS exhibits lower compressive stress and strain values. The biaxial stress decreases from 1.59 to 0.60 GPa for AlN on CSS and from 0.90 to 0.38 GPa for AlN on NPSS sample in the temperature range 80–300 K, which shows compressive stress. According to the TEM data, the stress varies from tensile on the interface to compressive on the surface. It can be deduced that the nano-holes provide more channels for stress relaxation. Nano-patterning leads to a lower degree of disorder and stress/strain relaxes by the formation of the nano-hole structure between the interface of AlN epilayers and the substrate. The low crystal disorder and defects in the AlN on NPSS is confirmed by the small Urbach energy values. The variation in bandgap (Eg) and optical constants (n, k) with temperature are discussed in detail. Nano-patterning leads to poor light transmission due to light scattering, coupling, and trapping in nano-holes.


2011 ◽  
Vol 356-360 ◽  
pp. 423-429
Author(s):  
Meng Ye ◽  
Jin Huang ◽  
Rui Chen ◽  
Qi Zhuang He

An elevated arsenic (As) content in groundwater imposes a great threat to people worldwide. Thus, developing new and cost-effective methods to remove As from groundwater and drinking water becomes a priority. Using Zero-Valent iron (ZVI) to remove As from water is a proven technology. In this study, ZVI modified SBA-15 mesoporous silicamolecular sieves (ZVI-SBA-15), was prepared, characterized, and used for removing arsenic from water. Wet impregnation, drying, and calcination steps led to iron inclusion within the mesopores. Iron oxide was reduced to ZVI by NaBH4, and the ZVI modified SBA-15 was obtained. Fourier-transform infrared spectroscopy confirmed the preparation process of the nitrate to oxide forms. The structure of the materials was confirmed by Powder X-ray diffraction. Its data indicated that the structure of ZVI-SBA-15 retained the host SBA-15 structure. Brunauer-Emmett-Teller analysis revealed a decrease in surface area and pore size, indicating ZVI-SBA-15 coating on the inner surfaces. Transmission electron micrographs also confirmed that modified SBA-15 retained the structure of the parent SBA-15 silica.It has a high uptake capability(more than 90 pecent) make it potentially attractive absorbent for the removal of arsenic from water.


2016 ◽  
Vol 7 ◽  
pp. 1492-1500 ◽  
Author(s):  
Ionel Stavarache ◽  
Valentin Adrian Maraloiu ◽  
Petronela Prepelita ◽  
Gheorghe Iordache

Obtaining high-quality materials, based on nanocrystals, at low temperatures is one of the current challenges for opening new paths in improving and developing functional devices in nanoscale electronics and optoelectronics. Here we report a detailed investigation of the optimization of parameters for the in situ synthesis of thin films with high Ge content (50 %) into SiO2. Crystalline Ge nanoparticles were directly formed during co-deposition of SiO2 and Ge on substrates at 300, 400 and 500 °C. Using this approach, effects related to Ge–Ge spacing are emphasized through a significant improvement of the spatial distribution of the Ge nanoparticles and by avoiding multi-step fabrication processes or Ge loss. The influence of the preparation conditions on structural, electrical and optical properties of the fabricated nanostructures was studied by X-ray diffraction, transmission electron microscopy, electrical measurements in dark or under illumination and response time investigations. Finally, we demonstrate the feasibility of the procedure by the means of an Al/n-Si/Ge:SiO2/ITO photodetector test structure. The structures, investigated at room temperature, show superior performance, high photoresponse gain, high responsivity (about 7 AW−1), fast response time (0.5 µs at 4 kHz) and great optoelectronic conversion efficiency of 900% in a wide operation bandwidth, from 450 to 1300 nm. The obtained photoresponse gain and the spectral width are attributed mainly to the high Ge content packed into a SiO2 matrix showing the direct connection between synthesis and optical properties of the tested nanostructures. Our deposition approach put in evidence the great potential of Ge nanoparticles embedded in a SiO2 matrix for hybrid integration, as they may be employed in structures and devices individually or with other materials, hence the possibility of fabricating various heterojunctions on Si, glass or flexible substrates for future development of Si-based integrated optoelectronics.


Sign in / Sign up

Export Citation Format

Share Document