A Structural Comparison of Si(100) Oxidized by Atomic and Molecular Oxygen

2002 ◽  
Vol 751 ◽  
Author(s):  
Maja Randjelovic ◽  
Judith C. Yang

ABSTRACTWe compared the structural characteristics of a silica layer formed on Si(100) by oxidation in hyperthermal atomic oxygen and molecular oxygen at 493K. The laser detonation method was used to create primarily neutral atomic oxygen with kinetic energy of 5.1eV. The silicon oxides were characterized by High Resolution Transmission Electron Microscopy (HRTEM), Atomic Force Microscopy (AFM), Rutherford Backscattering Spectrometry (RBS), Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). We determined that atomic oxygen forms amorphous silica that is almost twice as thick and nearly double the surface roughness as compared to molecular oxygen - formed silica at the same temperature and time conditions.

2004 ◽  
Vol 851 ◽  
Author(s):  
Maja Kisa ◽  
William G. Stratton ◽  
Timothy K. Minton ◽  
Klaus van Benthem ◽  
Steve J. Pennycook ◽  
...  

ABSTRACTWe had studied the effects of hyperthermal (5.1eV) atomic oxygen (AO) on the structural characteristics of the silica layer and Si/SiOx interface formed by the oxidation of Si-single crystal by a variety of microcharacterization techniques. A laser detonation source was used to produce atomic oxygen with 5.1eV kinetic energy. High Resolution Transmission Electron Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED) demonstrated that the silica layer formed on Si(100) by atomic oxygen is thicker, more homogeneous, and less amorphous, compared to the oxide layer created by molecular oxygen (MO). High spatial resolution Electron Energy Loss Spectroscopy (EELS) study confirmed that the Si/SiOx interface created by atomic oxygen is abrupt containing no suboxides as opposed to the broad interface with transitional states formed by molecular oxygen. SAED technique was used to observe sharper diffraction rings present in the diffraction pattern of Si(100) oxidized by reactive atomic oxygen as opposed to the diffused haloes present in the diffraction pattern of Si(100) oxidized by molecular oxygen. Radial Distribution Function (RDF) analyses were performed on the SAED patterns of Si(100) oxidized in atomic and molecular oxygen, indicating that a more ordered oxide is formed by atomic oxygen. Initial Fluctuation Electron Microscopy (FEM) results confirmed an increased medium range ordering in SiOx formed by atomic oxygen when compared to the non-regular arrangement present in the amorphous oxide formed by the oxidation of Si(100) in molecular oxygen.


2013 ◽  
Vol 872 ◽  
pp. 74-78 ◽  
Author(s):  
S.P. Zhuravkov ◽  
Evgeny Plotnikov ◽  
Dmitry Martemiyanov ◽  
Nikolay A. Yavorovsky ◽  
Ulrich Hasse ◽  
...  

The morphological and structural characteristics of nanoscale silver particles obtained by the method of electric spark dispersion of metal granules in the liquid aprotic medium were obtained using atomic force microscopy, transmission electron microscopy, and dynamic light scattering spectroscopy. The specific surface, morphology, structure and the distribution by size of the particles are presented.


2011 ◽  
Vol 1301 ◽  
Author(s):  
Rahul Chhabra ◽  
Hicham Fenniri

ABSTRACTElectroless synthesis and hierarchical organization of 1.4 nm Pd and Pt nanoparticles (NPs) on self-assembled Rosette Nanotubes (RNTs) is described. The nucleated NPs are nearly monodisperse and reveal supramolecular organizations guided by RNT templates. Interestingly, the narrow size distribution is attributable to unique templating behavior of RNTs. The resulting metal NP-RNT composites were characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). X-ray Photoelectron Spectroscopy (XPS) was also performed to confirm the nature and composition of RNT-templated NPs.


2015 ◽  
Vol 821-823 ◽  
pp. 213-216
Author(s):  
S.M. Ryndya ◽  
N.I. Kargin ◽  
A.S. Gusev ◽  
E.P. Pavlova

Silicon carbide thin films were obtained on Si (100) and (111) substrates by means of vacuum laser ablation of α-SiC ceramic target. The influence of substrate temperature on composition, structure and surface morphology of experimental samples was examined using Rutherford backscattering spectrometry (RBS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), conventional and high-resolution transmission electron microscopy (TEM/HRTEM), atomic force microscopy (AFM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) methods.


2012 ◽  
Vol 16 (07n08) ◽  
pp. 713-740 ◽  
Author(s):  
José H. Zagal ◽  
Sophie Griveau ◽  
Mireya Santander-Nelli ◽  
Silvia Gutierrez Granados ◽  
Fethi Bedioui

We discuss here the state of the art on hybrid materials made from single (SWCNT) or multi (MWCNT) walled carbon nanotubes and MN4complexes such as metalloporphyrins and metallophthalocyanines. The hybrid materials have been characterized by several methods such as cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electrochemical microscropy (SECM). The materials are employed for electrocatalysis of reactions such as oxygen and hydrogen peroxide reduction, nitric oxide oxidation, oxidation of thiols and other pollutants.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Angela De Bonis ◽  
Agostino Galasso ◽  
Antonio Santagata ◽  
Roberto Teghil

A MgB2target has been ablated by Nd:glass laser with a pulse duration of 250 fs. The plasma produced by the laser-target interaction, showing two temporal separated emissions, has been characterized by time and space resolved optical emission spectroscopy and ICCD fast imaging. The films, deposited on silicon substrates and formed by the coalescence of particles with nanometric size, have been analyzed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. The first steps of the films growth have been studied by Transmission Electron Microscopy. The films deposition has been studied by varying the substrate temperature from 25 to 500°C and the best results have been obtained at room temperature.


2020 ◽  
Vol 10 (16) ◽  
pp. 5415
Author(s):  
Ashique Kotta ◽  
Hyung Kee Seo

Metal-oxide-based electrodes play a crucial role in various transparent conductive oxide (TCO) applications. Among the p-type materials, nickel oxide is a promising electrically conductive material due to its good stability, large bandgap, and deep valence band. Here, we display pristine and 3 at.%V-doped NiO synthesized by the solvothermal decomposition method. The properties of both the pristine and 3 at.%V:NiO nanoparticles were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), Raman spectroscopy, ultraviolet–visible spectroscopy (UV–vis), and X-ray photoelectron spectroscopy (XPS). The film properties were characterized by atomic force microscopy (AFM) and a source meter. Our results suggest that incorporation of vanadium into the NiO lattice significantly improves both electrical conductivity and hole extraction. Also, 3 at.%V:NiO exhibits a lower crystalline size when compared to pristine nickel oxide, which maintains the reduction of surface roughness. These results indicate that vanadium is an excellent dopant for NiO.


2003 ◽  
Vol 786 ◽  
Author(s):  
Maja Kisa ◽  
Ray D. Twesten ◽  
Judith C. Yang

ABSTRACTThe structural characteristics of a silica layer and Si/SiO2 interface formed on Si single-crystal by oxidation in hyperthermal atomic oxygen (AO) and molecular oxygen (MO) at 493K were compared by wide variety of experimental techniques. The hyperthermal AO with kinetic energy of 5.1eV was created by the pulsed laser detonation of oxygen gas. The oxide formed by AO and MO on Si single crystal is amorphous as observed by HRTEM and selected area electron diffraction (SAED). However, the oxide formed by AO has a less random distribution of silicon and oxygen atoms as compared to the oxide formed by MO, as evidenced by the SAED patterns and EELS spectra. In contrast to MO formed silica, initial EELS results across the Si/SiO2 interface revealed no region of suboxides exists near the interface in the AO formed silica. The Si/SiO2 interface formed by AO species was found to be very abrupt and the oxide homogeneous, as opposed to the broad interface and non-homogeneous oxide created by MO, as determined by HRTEM and EELS.


2021 ◽  
Vol 53 (2) ◽  
pp. 187-198
Author(s):  
Milos Nenadovic ◽  
Danilo Kisic ◽  
Miljana Mirkovic ◽  
Snezana Nenadovic ◽  
Ljiljana Kljajevic

The implantation of high-density polyethylene (HDPE) has been conducted using Ag+ ions with energy of 60 keV, achieved fluences 1.5 and 10?1015 ions/cm2. Transmission electron microscopy (STEM) and field emission gun - scanning electron microscopy (FEG-SEM) showed the existence of nanoparticle clusters. X ray photoelectron spectroscopy (XPS) revealed the presence of silver in the sample surface region. The surface topography was studied by atomic force microscopy (AFM), while the surface composition uniformity was analyzed using phase imaging AFM. Optical characterization obtained by spectroscopic ellipsometry (SE) showed changes in refractive index, extinction coefficient and the optical band gap with the fluence of implanted ions.


2008 ◽  
Vol 22 (25) ◽  
pp. 2493-2501 ◽  
Author(s):  
HUN-SIK KIM ◽  
MINSUNG KANG ◽  
WON-IL PARK ◽  
DON-YOUNG KIM ◽  
HYOUNG-JOON JIN

Multiwalled carbon nanotubes (MWCNTs) were dispersed in various alcohols such as methanol, ethanol and isopropanol using ultrasonication. In order to disperse the MWCNTs in the alcohols, they were treated using a mixture of H 2 SO 4 and HNO 3 (3 : 1, vol/vol). The concentration of MWCNTs was approximately 0.03 wt.% and they formed a homogeneous dispersion in the alcohol solutions. The functional groups introduced on the surface of the MWCNTs during the acid treatment were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy. The dispersibility of the MWCNTs in the alcohols was characterized using atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The stability of the MWCNT dispersions was also measured using a recently developed optical analyzer (Turbiscan).


Sign in / Sign up

Export Citation Format

Share Document