Kinetics and Mechanisms of Formation of Al-Ni Intermetallics

1986 ◽  
Vol 81 ◽  
Author(s):  
J. A. Patchett ◽  
G. J. Abbaschian

AbstractThe effects of cooling rate and composition on the nucleation and growth kinetics of NiAl, Ni2Al3, and NiAl3 intermetallics were studied for alloys containing 25 and 31.5 ht.% Ni. Fgr the former composition, the peritectic regction Ni Al + Liquid → NiAl3 was studied over cooling rates from 20 to 105 K/s. For the latter composhtion, the reaction NiAl + Liquid → Ni2Al3 was studied at cooling rates ranging form 10 to 600 K/sec. The amounis of constituent phases are shown to depend on the cooling rate, and for the peritectic phases, on the surface area of the primary phase. The nucleation of Ni2Al3 and NiAl3, and the ordering of the aluminum-rich NiAl were also examines uding trans ission electron microscopy. Cooling the NiAl + liquid below the peritectic temperature results in a metastable extension of NiAl with a high dislocation and stacking fault density, followed by the epitaxial nucleation and almost dislocation-free growth of Ni2Al3 In contrast, the nucleation of the NiAl3 on Ni2Al3 occurs directly witgoud the formationof an intermediate region.

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1515
Author(s):  
Jonathan Alms ◽  
Christian Hopmann ◽  
Jian Wang ◽  
Tobias Hohlweck

The modelling of the correlation between pressure, specific volume and temperature (pvT) of polymers is highly important for applications in the polymer processing of semi-crystalline thermoplastics, especially in injection moulding. In injection moulding, the polymer experiences a wide range of cooling rates, for example, 60 °C/min near the centre of the part and up to 3000 °C/min near the mould walls. The cooling rate has a high influence on the pvT behaviour, as was shown in the continuous two-domain pvT model (CTD). This work examined the Hoffman–Lauritzen nucleation and growth theory used in the modified Hammami model for extremely high cooling rates (up to 300,000 °C/min) by means of Flash differential scanning calorimeter (DSC) measurements. The results were compared to those of the empirical continuous two-domain pvT model. It is shown that the Hammami model is not suitable to predict the crystallisation kinetics of polypropylene at cooling rates above 600 °C/min, but that the continuous two-domain pvT model is well able to predict crystallisation temperatures at high cooling rates.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 918
Author(s):  
Julia Osten ◽  
Benjamin Milkereit ◽  
Michael Reich ◽  
Bin Yang ◽  
Armin Springer ◽  
...  

The mechanical properties after age hardening heat treatment and the kinetics of related phase transformations of high strength AlZnMgCu alloy AA 7068 were investigated. The experimental work includes differential scanning calorimetry (DSC), differential fast scanning calorimetry (DFSC), sophisticated differential dilatometry (DIL), scanning electron microscopy (SEM), as well as hardness and tensile tests. For the kinetic analysis of quench induced precipitation by dilatometry new metrological methods and evaluation procedures were established. Using DSC, dissolution behaviour during heating to solution annealing temperature was investigated. These experiments allowed for identification of the appropriate temperature and duration for the solution heat treatment. Continuous cooling experiments in DSC, DFSC, and DIL determined the kinetics of quench induced precipitation. DSC and DIL revealed several overlapping precipitation reactions. The critical cooling rate for a complete supersaturation of the solid solution has been identified to be 600 to 800 K/s. At slightly subcritical cooling rates quench induced precipitation results in a direct hardening effect resulting in a technological critical cooling rate of about 100 K/s, i.e., the hardness after ageing reaches a saturation level for cooling rates faster than 100 K/s. Maximum yield strength of above 600 MPa and tensile strength of up to 650 MPa were attained.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Boštjan Markoli ◽  
Kemal Delijić ◽  
Neva Štrekelj ◽  
Iztok Naglič

Aluminum-based alloys have been used extensively for the past five decades primarily due to their good strength vs. specific weight ratio. Numerous methods and techniques have been devised to further improve mechanical properties of these alloys as they are often used in the transport applications. Influence of the cooling rate and chemical composition on the constitution of Al-Mn-based alloy has been investigated. Elements such as B, Be, C, Ca, Cu, Fe, Mg, Si, Sr and Ti have been introduced to Al-Mn alloys in order to study their influence. Changes in cooling rates during casting using permanent copper molds with different sized troughs have also been monitored. Combined influence of changes in chemical composition and cooling rates was followed using LOM, SEM, EDS, DAS measurement and mathematic modeling. It has been established that Al-Mn-based alloys form a lot of different phases during synthesis and solidification, mostly crystalline intermetallics, but also in some cases quasicrystalline (QC) ones, especially when cooling rates exceed 500 Ks-1. QCs are currently also considered as an alternative for reinforcement of Al-Mn-based alloys. It was found that in the case of alloy system Al-Mn-Cu-Be and cooling rates between 500 and 1350 Ks-1 the preferred phase formed was an icosahedral QC phase or iQC. Icosahedral QC phase formed as the primary phase and in some cases also in the form of the quasicrystalline eutectic (αAl + iQC). Additions of B, C, Ca, Ti and Sr have not proven to be effective in promoting formation of quasicrystals in cast Al-Mn alloys whilst Fe, Cu, Mg and Si proved to be highly efficient.


2007 ◽  
Vol 539-543 ◽  
pp. 4620-4625 ◽  
Author(s):  
Andrzej Kazimierz Lis ◽  
Jadwiga Lis

Deformations at temperatures 900 °C, 860 °C, 810 °C and 780 °C in the consecutive amounts 24%, 20%, 19% and 18.5% were applied to low carbon HN5MVNb bainitic steel using hot compression testing in dilatometer Bähr 805 followed by continuous cooling. The results show clearly that the kinetics of the austenite decomposition were depended on local equilibrium conditions between recovery, recrystallization and phase transformation processes for a given cooling rate. Bainite transformation was accelerated when sample was cooled after deformation at cooling rate 60 °C/s. At lower cooling rates than 5 °C/s down to 0.5 °C/s, bainite transformation was postpone when comparing its kinetics with those for non deformed steel. The bainitic transformation cannot be fitted to a single transformation mechanism owing to the formation of carbides. Different behavior was observed for austenite to ferrite transformation. Usually it was accelerated with consecutive deformations of the steel for all cooling rates used in experiments.


2020 ◽  
Vol 321 ◽  
pp. 12038
Author(s):  
BUZOLIN Ricardo ◽  
WEISS Desirée ◽  
KRUMPHALS Alfred ◽  
LASNIK Michael ◽  
POLETTI Maria Cecilia

The growth kinetics of allotriomorphic α along the prior β grain boundaries and of globular primary α in Ti-6Al-4V during continuous cooling is described. A physical model is developed based on classical nucleation and growth of platelets for the allotriomorphic α. The growth of the primary α is modelled based on the growth of spherical particle immerged on a supersaturated β-matrix. Continuous cooling tests at two different holding temperatures in the α+β field, 930°C and 960°C, and five different cooling rates, 10, 30, 40, 100 and 300°C/min, are conducted to validate the proposed models and elucidate the growth sequence of those α morphologies. Additionally, interrupted tests at different temperatures are conducted to determine the progress of growth of primary α and formation allotriomorphic α during cooling. The size of primary α increases while its size distribution broadens with a decrease in cooling rate. Area fractions of primary α decrease with increasing cooling rate and increasing holding temperature. Moreover, the lower the cooling rate, the thicker the plates of allotriomorphic α. At the beginning of the cooling, growth of primary α, as well as formation of allotriomorphic α plates is observed. The experimental and modelled results show good agreement.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 326 ◽  
Author(s):  
Rostislav Kawulok ◽  
Ivo Schindler ◽  
Jaroslav Sojka ◽  
Petr Kawulok ◽  
Petr Opěla ◽  
...  

Based on dilatometric tests, the effect of various values of previous deformation on the kinetics of austenite transformations during the cooling of 100Cr6 steel has been studied. Dilatometric tests have been performed with the use of the optical dilatometric module of the plastometer Gleeble 3800. The obtained results were compared to metallographic analyses and hardness measurements HV30. Uniaxial compression deformations were chosen as follows: 0, 0.35, and 1; note that these are true (logarithmic) deformations. The highly important finding was the absence of bainite. In addition, it has been verified that with the increasing amount of deformation, there is a further shift in the pearlitic region to higher cooling rates. The previous deformation also affected the temperature martensite start, which decreased due to deformation. The deformation value of 1 also shifted the critical cooling rate required for martensite formation from the 12 °C/s to 25 °C/s.


Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Mihai Contineanu ◽  
iulia Contineanu ◽  
Ana Neacsu ◽  
Stefan Perisanu

The radiolysis of the isomers L-, D- and DL- of the aspartic acid, in solid polycrystalline state, was investigated at room temperature. The analysis of their ESR spectra indicated the formation of at least two radicalic entities. The radical, identified as R3, resulting from the deamination of the acid, exhibits the highest concentration and thermal resistance. Possible mechanisms of formation of three radical species are suggested, based also on literature data. The kinetics of the disappearance of radical R3 indicated a complex mechanism. Three possible variants were suggested for this mechanism.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guangming Dai ◽  
Lihua Zhan ◽  
Chenglong Guan ◽  
Minghui Huang

Abstract In this study, the differential scanning calorimetry (DSC) tests were performed to measure the nonisothermal crystallization behavior of carbon fiber reinforced polyether ether ketone (CF/PEEK) composites under different cooling rates. The characteristic parameters of crystallization were obtained, and the nonisothermal crystallization model was established. The crystallization temperature range of the material at different cooling rates was predicted by the model. The unidirectional laminates were fabricated at different cooling rates in the crystallization temperature range. The results showed that the crystallization temperature range shifted to a lower temperature with the increase of cooling rate, the established nonisothermal crystallization model was consistent with the DSC test results. It is feasible to shorten the cooling control range from the whole process to the crystallization range. The crystallinity and transverse tensile strength declined significantly with the increase of the cooling rate in the crystallization temperature range. The research results provided theoretical support for the selection of cooling conditions and temperature control range, which could be applied to the thermoforming process of semi-crystalline polymer matrixed composites to improve the manufacturing efficiency.


2000 ◽  
Vol 650 ◽  
Author(s):  
S. L. Dudarev

ABSTRACTThe effect of inhomogeneous nucleation and growth of cavities near grain boundaries illustrates the failure of the standard rate theory to describe the kinetics of phase transformations in irradiated materials under cascade damage conditions. The enhanced swelling observed near grain boundaries is believed to result from the competition between the diffusional growth of cavities and their shrinkage due to the interaction with mobile interstitial clusters. Swelling rates associated with the two processes behave in a radically different way as a function of the size of growing cavities. For a spatially homogeneous distribution of cavities this gives rise to the saturation of swelling in the limit of large irradiation doses.We investigate the evolution of the population of cavities nucleating and growing near a planar grain boundary. We show that a cavity growing near the boundary is able to reach a size that is substantially larger than the size of a cavity growing in the interior region of the grain. For a planar grain boundary the magnitude of swelling at maximum is found to be up to eight times higher than the magnitude of swelling in the grain interior.


Sign in / Sign up

Export Citation Format

Share Document