Ultra-Shallow Junctions for the 65nm Node Based on Defect and Stress Engineering

2005 ◽  
Vol 864 ◽  
Author(s):  
Victor Moroz ◽  
Majeed Foad ◽  
Houda Graoui ◽  
Faran Nouri ◽  
Dipu Pramanik ◽  
...  

AbstractThe co-implantation of germanium, carbon, and boron with the optimum implant energies and doses makes it possible to create p+/n junctions with the sheet resistance of less than 600 Ohm/square and the slope of less than 3 nm/decade. The narrow process window is based on careful engineering of the amorphization, point defects, and stresses and includes standard 1050°C spike annealing. The germanium pre-amorphization suppresses the ion channeling for the subsequent boron implant. The tensile stress induced by the substitutional carbon atoms and the compressive stress induced by the substitutional germanium atoms slow down boron diffusion and help to make the junctions shallower. The stress gradient in the transition region from the strained carbon and germanium doped layers to the relaxed silicon underneath creates an uphill boron flux that makes the junction slope steeper.The optimum amount of carbon is placed in between the implanted boron and the implant damage, which is located below the amorphized layer. During the annealing, the carbon atoms capture silicon interstitials that are coming from the implant damage and form carbon-interstitial clusters. The analysis demonstrates that it is possible to capture over 95% of the interstitials this way before they have a chance to reach boron-doped layer. This completely suppresses the transient-enhanced boron diffusion (TED) and drastically reduces the amount of boron that is deactivated in boron-interstitial clusters (BICs). In fact, the point defect engineering with an optimized carbon profile allows to remove all non-equilibrium silicon interstitials that are generated by the following three sources: the implant damage below the amorphized layer, the rapid temperature ramp down, and the interstitials generated by boron at high concentrations (due to the effect known as boron-enhanced diffusion (BED)).The latter effect leads to significant increase of the apparent boron activation level beyond the well-characterized solid-state solubility level. We explain this effect as a reduction in formation of BICs due to the lack of interstitial supersaturation. In carbon-free silicon, high concentration boron is always accompanied by the non-equilibrium interstitials, coming from either the implant damage or the BICs even if boron is introduced into silicon by pre-deposition instead of the implantation. Extensive experiments and theoretical analysis based on simulation of the interaction of Ge, C, I, and B atoms, as well as the stress effects, point to the optimized process flow that improves the shape and parameters of the p+/n USJs.

1999 ◽  
Vol 568 ◽  
Author(s):  
M. A. Foad ◽  
A. J. Murrell ◽  
E. J. H. Collart ◽  
G. de Cock ◽  
D. Jennings ◽  
...  

ABSTRACTAs the drive towards the production of 100 nm CMOS devices pick up speed, the practical aspect of transistor shallow junction formation, including a large menu of process integration issues, must now be solved in a short order. The most direct path to 50 nm junction depths is through the sub-keV boron implantation and rapid thermal annealing.The material aspects of the process integration centers on: (1) CMOS devices for shallow, highly-activated and abrupt junctions (involving the choice of ion species [B, BF, B10H14, BSi2, etc.], substrate materials [ Cz, Epi, SOI], anneal conditions [ramp rate, soak time, ambient gas], etc.) and (2) Defect-dopant interactions during annealing (including surface reactions of high concentration species [B, F], diffusion and carrier trapping by background and co-implanted species [C, 0, F, etc.].Process data for atomic and electrical activity profiles as well as defect and interface structures will be presented to illustrate progress towards understanding these complex process interactions. A particular focus will be the effects of anneal ambient and rapid temperature rise times approaching the “pike” anneal ideal.


2000 ◽  
Vol 610 ◽  
Author(s):  
Ant Ural ◽  
Serene Koh ◽  
P. B. Griffin ◽  
J. D. Plummer

AbstractUnderstanding the coupling between native point defects and dopants at high concentrations in silicon will be key to ultra shallow junction formation in silicon technology. Other effects, such as transient enhanced diffusion (TED) will become less important. In this paper, we first describe how thermodynamic properties of the two native point defects in silicon, namely vacancies and self-interstitials, have been obtained by studying self-diffusion in isotopically enriched structures. We then discuss what this tells us about dopant diffusion. In particular, we show that the diffusion of high concentration shallow dopant profiles is determined by the competition between the flux of mobile dopants and those of the native point defects. These fluxes are proportional to the interstitial or vacancy components of dopant and self-diffusion, respectively. This is why understanding the microscopic mechanisms of silicon self-diffusion is important in predicting and modeling the diffusion of ultra shallow dopant profiles. As an example, we show experimental data and simulation fits of how these coupling effects play a role in the annealing of shallow BF2 ion implantation profiles. We conclude that relatively low temperature furnace cycles following high temperature rapid thermal anneals (RTA) have a significant effect on the minimum junction depth that can be achieved.


2004 ◽  
Vol 829 ◽  
Author(s):  
Haruki Ryoken ◽  
Isao Sakaguchi ◽  
Takeshi Ohgaki ◽  
Naoki Ohashi ◽  
Yutaka Adachi ◽  
...  

ABSTRACTDefect structures in ZnO thin films were studied to clarify the mechanism of charge compensation and crystallinity degradation induced by alloying. Regarding the undoped ZnO films, it was indicated that the degree of non-equilibrium behavior in the films deposited by PLD was much less than in the films prepared by the other two methods, i.e., MBE and sputtering, and, moreover, the solid-state diffusion behavior in the PLD-grown undoped ZnO was close to that of bulk ZnO. The heavily Al-doped films and alloy films with high concentrations of MgO exhibited significant non-equilibrium behavior, even for those prepared by PLD. It was indicated that the high concentration of extrinsic elements, e.g., Al and Mg, introduces non-equilibrium defects into ZnO films and those defects are the cause of the crystallinity degradation and thermal instability of the films.


2004 ◽  
Vol 810 ◽  
Author(s):  
R. Duffy ◽  
V.C. Venezia ◽  
A. Heringa ◽  
M.J.P. Hopstaken ◽  
G.C.J. Maas ◽  
...  

ABSTRACTIn this work we investigate the diffusion of high-concentration ultrashallow boron, fluorine, phosphorus, and arsenic profiles in amorphous silicon. We demonstrate that boron diffuses at high concentrations in amorphous silicon during low-temperature thermal annealing. Isothermal and isochronal anneal sequences indicate that there is an initial transient enhancement of diffusion. We have observed this transient diffusion characteristic both in amorphous silicon preamorphized by germanium ion implantation and also in amorphous silicon preamorphized by silicon ion implantation. We also show that the boron diffusivity in the amorphous region is similar with and without fluorine, and that the lack of diffusion for low-concentration boron profiles indicates that boron diffusion in amorphous silicon is driven by high concentrations. Ultrashallow high-concentration fluorine profiles diffuse quite rapidly in amorphous silicon, and like boron, undergo a definite transient enhancement. In contrast, ultrashallow high- concentration phosphorus and arsenic profiles did not significantly diffuse in our experiments.


Author(s):  
Nael Mohammed Sarheed ◽  
Osamah Faisal Kokas ◽  
Doaa Abd Alabas Muhammed Ridh

The plant of castor is widely spread in the Iraqi land, and characterized with containing ricin toxin, which has a very serious effects, and because the seeds of this plant scattered in the agricultural soil and rivers water, which increases the exposure of humans and animals to these beans. Objective: This experiment was designed to study the effect of high concentration of castor bean powder in some physiological and biochemical parameters and changes in some tissues of the body, as well as trying to use doxycycline to reduce the effects of ingestion of these seeds. Materials and Methods: In the experiment, 24 local rabbits were raised and fed in the Animal House of the Faculty of Medicine / Al-Muthanna University, then divided into four groups and treated for three weeks (21 days), Control group: treated with normal saline solution (0.9) orally throughout the experiment, G1: was treated orally with a concentration of 25 mg / kg of castor bean powder daily during the experiment, G2 : orally treated 25 mg / kg of castor bean and 25 mg / kg of doxycycline, G3: orally treated 25 mg / kg of castor powder with 50 mg / kg of doxycycline daily throughout the trial period. Results: The results of the experiment showed significant changes (P less than 0.05) in all physiological and biochemical blood tests when compared with control group. There was a significant decrease in PCV, Hb, RBC, T.protein and body weights, while demonstrated a significant increase in WBC, Urea, Creatinine, ALT, AST and ALP, with distortions in liver and kidney of animals that treated with Castor beans. In contrast, the treatment with doxycycline and caster beans showed significant improvement reflected by a normal proportion in physiological tests and biochemical tests with improvement in the tissues when compared to control group. Conclusions: It can be concluded from this study that castor bean has high toxic and pathogenic effects that may be dangerous to the life of the organism. Therefore, it is advisable to be cautious of these pills and avoid exposure to them, also recommended to take high concentrations of doxycycline treatment when infected with castor bean poisoning.


2020 ◽  
Vol 65 (9-10) ◽  
pp. 3-7
Author(s):  
V. V. Gostev ◽  
Yu. V. Sopova ◽  
O. S. Kalinogorskaya ◽  
M. E. Velizhanina ◽  
I. V. Lazareva ◽  
...  

Glycopeptides are the basis of the treatment of infections caused by MRSA (Methicillin-Resistant Staphylococcus aureus). Previously, it was demonstrated that antibiotic tolerant phenotypes are formed during selection of resistance under the influence of high concentrations of antibiotics. The present study uses a similar in vitro selection model with vancomycin. Clinical isolates of MRSA belonging to genetic lines ST8 and ST239, as well as the MSSA (ATCC29213) strain, were included in the experiment. Test isolates were incubated for five hours in a medium with a high concentration of vancomycin (50 μg/ml). Test cultures were grown on the medium without antibiotic for 18 hours after each exposure. A total of ten exposure cycles were performed. Vancomycin was characterized by bacteriostatic action; the proportion of surviving cells after exposure was 70–100%. After selection, there was a slight increase in the MIC to vancomycin (MIC 2 μg/ml), teicoplanin (MIC 1.5–3 μg/ml) and daptomycin (MIC 0.25–2 μg/ml). According to the results of PAP analysis, all strains showed an increase in the area under curve depending on the concentration of vancomycin after selection, while a heteroresistant phenotype (with PAP/AUC 0.9) was detected in three isolates. All isolates showed walK mutations (T188S, D235N, E261V, V380I, and G223D). Exposure to short-term shock concentrations of vancomycin promotes the formation of heteroresistance in both MRSA and MSSA. Formation of VISA phenotypes is possible during therapy with vancomycin.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 339-345 ◽  
Author(s):  
M. G. Dubé ◽  
J. M. Culp

Experiments were conducted in artificial streams to determine the effects of increasing concentrations of biologically treated bleached kraft pulp mill effluent (BKPME) on periphyton and chironomid growth in the Thompson River, British Columbia. Periphyton growth, as determined by increases in chlorophyll a, was significantly stimulated at all effluent concentrations tested (0.25%, 0.5%, 1.0%, 5.0% and, 10.0%). Chironomid growth (individual weight) was also significantly stimulated at low effluent concentrations (≤1.0%). At higher concentrations (5.0% and 10.0%), chironomid growth was inhibited relative to the 1.0% treatment streams. Increases in growth were attributed to the effects of nutrient and organic enrichment from BKPME. The effluent contained high concentrations of phosphorus and appears to be an important source of carbon for benthic insects grazing on the biofilm. In high concentration effluent streams, chironomid growth decreased despite low levels of typical pulp mill contaminants. This suggests that other compounds in the effluent, such as wood extractives, may be inhibiting chironomid growth. These results support findings of field monitoring studies conducted in the Thompson River where changes in periphyton and chironomid abundance occurred downstream of the bleached kraft pulp mill.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 62
Author(s):  
Robert Cichowicz ◽  
Maciej Dobrzański

Spatial analysis of the distribution of particulate matter PM10, PM2.5, PM1.0, and hydrogen sulfide (H2S) gas pollution was performed in the area around a university library building. The reasons for the subject matter were reports related to the perceptible odor characteristic of hydrogen sulfide and a general poor assessment of air quality by employees and students. Due to the area of analysis, it was decided to perform measurements at two heights, 10 m and 20 m above ground level, using measuring equipment attached to a DJI Matrice 600 unmanned aerial vehicle (UAV). The aim of the measurements was air quality assessment and investigate the convergence of the theory of air flow around the building with the spatial distribution of air pollutants. Considerable differences of up to 63% were observed in the concentrations of pollutants measured around the building, especially between opposite sides, depending on the direction of the wind. To explain these differences, the theory of aerodynamics was applied to visualize the probable airflow in the direction of the wind. A strong convergence was observed between the aerodynamic model and the spatial distribution of pollutants. This was evidenced by the high concentrations of dust in the areas of strong turbulence at the edges of the building and on the leeward side. The accumulation of pollutants was also clearly noticeable in these locations. A high concentration of H2S was recorded around the library building on the side of the car park. On the other hand, the air turbulence around the building dispersed the gas pollution, causing the concentration of H2S to drop on the leeward side. It was confirmed that in some analyzed areas the permissible concentration of H2S was exceeded.


2002 ◽  
Vol 717 ◽  
Author(s):  
Erik Kuryliw ◽  
Kevin S. Jones ◽  
David Sing ◽  
Michael J. Rendon ◽  
Somit Talwar

AbstractLaser Thermal Processing (LTP) involves laser melting of an implantation induced preamorphized layer to form highly doped ultra shallow junctions in silicon. In theory, a large number of interstitials remain in the end of range (EOR) just below the laser-formed junction. There is also the possibility of quenching in point defects during the liquid phase epitaxial regrowth of the melt region. Since post processing anneals are inevitable, it is necessary to understand both the behavior of these interstitials and the nature of point defects in the recrystallized-melt region since they can directly affect deactivation and enhanced diffusion. In this study, an amorphizing 15 keV 1 x 1015/cm2 Si+ implant was done followed by a 1 keV 1 x 1014/cm2 B+ implant. The surface was then laser melted at energy densities between 0.74 and 0.9 J/cm2 using a 308 nm excimer-laser. It was found that laser energy densities above 0.81 J/cm2 melted past the amorphous-crystalline interface. Post-LTP furnace anneals were performed at 750°C for 2 and 4 hours. Transmission electron microscopy was used to analyze the defect formation after LTP and following furnace anneals. Secondary ion mass spectrometry measured the initial and final boron profiles. It was observed that increasing the laser energy density led to increased dislocation loop formation and increased diffusion after the furnace anneal. A maximum loop density and diffusion was observed at the end of the process window, suggesting a correlation between the crystallization defects and the interstitial evolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Bidaud ◽  
D. Berling ◽  
D. Jamon ◽  
E. Gamet ◽  
S. Neveu ◽  
...  

AbstractThis paper is aimed at investigating the process of photocrosslinking under Deep-UV irradiation of nanocomposite thin films doped with cobalt ferrite magnetic nanoparticles (MNPs). This material is composed of a hybrid sol–gel matrix in which MNP can be introduced with high concentrations up to 20 vol%. Deep-UV (193 nm) is not only interesting for high-resolution patterning but we also show an efficient photopolymerization pathway even in the presence of high concentration of MNPs. In this study, we demonstrate that the photocrosslinking is based on the free radical polymerization of the methacrylate functions of the hybrid precursor. This process is initiated by Titanium-oxo clusters. The impact of the nanoparticles on the photopolymerization kinetic and photopatterning is investigated. We finally show that the photosensitive nanocomposite is suitable to obtain micropatterns with sub-micron resolution, with a simple and versatile process, which opens many opportunities for fabrication of miniaturized magneto-optical devices for photonic applications.


Sign in / Sign up

Export Citation Format

Share Document