Nanoscale Scanning Force Imaging of Polarization Phenomena in Ferroelectric Thin Films

MRS Bulletin ◽  
1998 ◽  
Vol 23 (1) ◽  
pp. 33-42 ◽  
Author(s):  
O. Auciello ◽  
A. Gruverman ◽  
H. Tokumoto ◽  
S.A. Prakash ◽  
S. Aggarwal ◽  
...  

The science and technology of ferroelectric thin films is currently attracting worldwide attention because of its application to a new generation of novel devices. Prime, among these applications are nonvolatile ferroelectric random-access memories (NVFRAMs), which have high speed and extended endurance. The core of an NVFRAM is a capacitor with a ferroelectric film sandwiched between two electrode layers. The polarization of the ferroelectric layer in two possible opposite directions, upon application of an electric field between the two electrodes, provides the logic “1” and “0” states needed for binary-code memory. In spite of the advances in the science and technology of ferroelectric thin films and their integration into ferroelectric capacitors, some materials-related integration strategies as well as manufacturability issues have delayed commercialization of NVFRAMs. High-density memories require storage elements that approach submicron lateral dimensions. Thus, improved understanding of the materials properties and polarization phenomena is needed in conjunction with the development of new characterization tools that can enable such an understanding. For example, a fundamental issue in ferroelectric thin-film capacitors is the exact nature of the complex domain structure in the polarizable ferroelectric layer and its dynamics under high-speed switching conditions. The miniaturization of NVFRAMs requires understanding of granularity in polarization reversal dynamics, fatigue, and retention characteristics. In this respect, theoretical models and electrical measurements (e.g., polarization hysteresis loops and transient currents) have provided substantial insights into the nature of the switching processes. However, the models (phenomenological in nature) and the electrical measurements provide only a global or macroscopic view of the switching process.

Author(s):  
Komalika Rani ◽  
Sylvia Matzen ◽  
Stéphane Gable ◽  
Thomas Maroutian ◽  
Guillaume Agnus ◽  
...  

Abstract Ferroelectric thin films are investigated for their potential in photovoltaic (PV) applications, owing to their high open-circuit voltage and switchable photovoltaic effect. The direction of the ferroelectric polarization can control the sign of the photocurrent through the ferroelectric layer, theoretically allowing for 100 percent switchability of the photocurrent with the polarization, which is particularly interesting for photo-ferroelectric memories. However, the quantitative relationship between photocurrent and polarization remains little studied. In this work, a careful investigation of the polarization-dependent photocurrent of epitaxial Pb(Zr,Ti)O3 thin films has been carried out, and has provided a quantitative determination of the unswitchable part of ferroelectric polarization. These results represent a systematic approach to study and optimize the switchability of photocurrent, and more broadly to get important insights on the ferroelectric behavior in all types of ferroelectric layers in which pinned polarization is difficult to investigate.


2002 ◽  
Vol 16 (03) ◽  
pp. 473-480 ◽  
Author(s):  
JULIA M. WESSELINOWA ◽  
STEFFEN TRIMPER

Based on an Ising model in a transverse field (TIM) and using a Green's function formalism the critical exponents of the polarization β and of the longitudinal susceptibility γ are calculated for a ferroelectric thin film consisting of N layers. The exponents depends on the number of layers in a significant manner. Whereas for N=3 layers the exponents are β=0.131 and γ=1.739 there is a change over to β=0.315 and γ=1.239 in case of N=30. The datas are in a good agreement with predictions for 2D and 3D Ising systems. Using scaling laws other exponents like α, δ, η and ν are obtained, too.


2011 ◽  
Vol 1345 ◽  
Author(s):  
Yichun Zhou

ABSTRACTFerroelectric field effect transistor (FFET) is a promising candidate for non-volatile random access memory because of its high speed, single device structure, low power consumption, and nondestructive read-out operation. Currently, however, such ideal devices are commercially not available due to poor interface properties between ferroelectric film and Si substrate, such as leakage current and interdiffusion etc. So we choose YSZ and HfO2 insulating thin films as buffer layer due to they possess relatively high dielectric constant, high thermal stability, low leakage current, and good interface property with Si substrates. Two structural diodes of Pt/BNT/YSZ/Si and Pt/SBT/HfO2/Si were fabricated, and the microstructures, interface properties, C-V, I-V, and retention properties were investigated in detail. Experimental results show that the fabricated diodes exhibit excellent long-term retention properties, which is due to the good interface and the low leakage density, demonstrating that the YSZ and HfO2 buffer layers are playing a critical modulation role between the ferroelectric thin film and Si substrate.


1998 ◽  
Vol 13 (2) ◽  
pp. 362-367 ◽  
Author(s):  
W. Pan ◽  
C. L. Thio ◽  
S. B. Desu

Reactive ion etching damage to Pt/Pb(Zr, Ti)O3/Pt ferroelectric capacitors was evaluated under Ar bombardment and CHClFCF3 etch plasmas. The hysteresis and degradation properties, including fatigue and leakage current, were examined systematically to study the mechanism of damage. The damage was measured quantitatively by comparing the relative voltage shift with respect to the initial hysteresis loops. The damage effects were found to be dependent on etching time and mainly due to the physical effect of ion bombardment. The electrical properties of the etched Pt/Pb(Zr, Ti)O3/Pt capacitors were substantially recovered by annealing at 400 °C for 30 min.


2007 ◽  
Vol 91 (14) ◽  
pp. 142902 ◽  
Author(s):  
Feng Yang ◽  
M. H. Tang ◽  
Y. C. Zhou ◽  
X. J. Zheng ◽  
F. Liu ◽  
...  

2015 ◽  
Vol 118 (7) ◽  
pp. 072013 ◽  
Author(s):  
Nina Balke ◽  
Stephen Jesse ◽  
Qian Li ◽  
Petro Maksymovych ◽  
M. Baris Okatan ◽  
...  

1999 ◽  
Vol 32 (17) ◽  
pp. L79-L82 ◽  
Author(s):  
C Alemany ◽  
R Jiménez ◽  
J Revilla ◽  
J Mendiola ◽  
M L Calzada

1996 ◽  
Vol 433 ◽  
Author(s):  
S. Trolier-Mckinstry ◽  
C. A. Randall ◽  
J. P. Maria ◽  
C. Theis ◽  
D. G. Schlom ◽  
...  

AbstractFerroelectric thin films typically differ from bulk ceramics in terms of both the average grain size and the degree of stress imposed on the film by the substrate. Studies on bulk ceramics have demonstrated that the number of domain variants within grains depends on the grain size for sizes <˜lμm. This can diminish the poling efficiency of the material. Since most thin films show primary grain sizes well below a micron, similar effects should be observed in films. In addition, since the perovskite ferroelectrics contain ferroelastic as well as ferroelectric domains, it seems clear that stress in thin films may markedly alter the degree to which domain walls contribute to the observed properties. In this paper, the relative importance of these factors are discussed for several types of ferroelectric thin films. Films have been prepared by pulsed laser deposition, magnetron sputtering, and by sol-gel processing. It has been found that epitaxial BaTiO3 films are ferroelectric at 77K down to thicknesses as low as ˜ 60nm. Data on the low and high field electrical properties are reported as a function of temperature, the film crystallinity, and film thickness for representative perovskite films.


2014 ◽  
Vol 602-603 ◽  
pp. 777-780
Author(s):  
Fann Wei Yang ◽  
Chien Min Cheng ◽  
Kai Huang Chen

In this study, we investigated the structure and ferroelectric properties of the as-deposited (Bi3.25Nd0.75)(Ti2.9V0.1)O12ferroelectric thin films on ITO substrate fabricated by rf magnetron sputtering method. The electrical, ferroelectric and physical characteristics of as-deposited (Bi3.25Nd0.75)(Ti2.9V0.1)O12thin films were developed under different conditions to find the optimal deposited parameters. The crystalline structure of the prepared (Bi3.25Nd0.75)(Ti2.9V0.1)O12thin films was analyzed by X-ray diffraction (XRD). Field emission scanning electron microscopy (FESEM) was used to observe the film thickness and the surface morphology including grain size and porosity. Additionally, the remnant polarization of the as-deposited ferroelectric thin films was improved by neodymium and vanadium elements doped in this study. The remanent polarization of as-deposited ferroelectric thin films was 11 μC/cm2as the measured frequency of 1kHz. Finally, the polarization of as-deposited ferroelectric thin film capacitor was decreased by 9% after the fatigue test with 109switching cycles.


2016 ◽  
Vol 23 (03) ◽  
pp. 1650010 ◽  
Author(s):  
LIAN CUI ◽  
HAIYING CUI ◽  
CHUNMEI WU ◽  
GUIHUA YANG ◽  
ZELONG HE ◽  
...  

In this paper, frequency, temperature, film thickness, surface effects, and various parameters dependence of dielectric susceptibility is investigated theoretically for ferroelectric thin films by the modified Landau theory under an AC applied field. The dielectric susceptibility versus AC applied field shows butterfly-shaped behavior, and depends strongly on the frequency and amplitude of the field and temperature. Our study shows that the existence of the surface transition layer can depress the dielectric susceptibility of a ferroelectric thin film. These results are well consistent with the phenomena reported in experiments.


Sign in / Sign up

Export Citation Format

Share Document